作者:phongchen,腾讯 IEG 后台开发工程师
2022 年 3 月,广大人民期盼已久的支持的泛型的 go1.18 发布了。但是目前基于泛型的容器实现还不多。我实现了一套类似 C++中 STL 的容器和算法库。其中有序的 Map 选择用跳表来实现,并优化到了相当好的性能。在此分享一下优化的思路和心得,供大家参考借鉴,如果发现有错误也欢迎指出。
首先为标题党致歉,不过确实没吹牛 😊。
最近一年我所负责的业务系统中,用 Go 语言的实现的占了至少 70%的比例,因此 Review 了大量的 Go 代码,也看了很多相关的技术资料。但是我确实没怎么写过 Go 的代码,因为一直以来我不太喜欢 Go 语言的主要有两点,一个是错误处理,另一个就是泛型。因此先前还是以写 C++和 Python 代码为主,再加上一些 Markdown 文档什么的。
2022 年 3 月,Go1.18 发布,支持了泛型,我也打算自己一边学习,一边写一些有实际价值的 Go 代码。
前几周孩子放假回老家,家里没人打扰了,调研了一下有没有类似 C++中 STL 的泛型库,发现要么很薄弱要么根本就不支持泛型。于是就花了几个周末和一些晚上的时间,写了个基于泛型的容器和算法库,暂且起名叫stl4go(👏 加 ⭐,🙏)。其中的有序 Map 我没有选择红黑树而是用了跳表,花了一些时间用了一些手法优化,测试了一下,基本上可以说是全 GitHub 上能找到的最快的 Go 的实现了。
跳表(skiplist)是一种随机化的数据, 由 William Pugh 在论文《Skip lists: a probabilistic alternative to balanced trees》中提出, 跳表以有序的方式在层次化的链表中保存元素, 效率和平衡树媲美 —— 查找、删除、添加等操作都可以在 O(logN)期望时间下完成, 综合能力相当于平衡二叉树,并且比起平衡树来说, 跳跃表的实现要简单直观得多,核心功能在 200 行以内即可实现,遍历的时间复杂度是 O(N),代码简单,空间上也比较节省,因此在挺多的场景得到应用。比如Redis 的 Sorted Set、LevelDB,详细原理和算法请移步下面这篇文章:Skip List--跳表(全网最详细的跳表文章没有之一),不再赘述。
完整代码见:
https://github.com/chen3feng/stl4go/blob/master/skiplist.go
附带单元测试和性能测试。
SkipList 用于需要有序的场合,在不需要有序的场景下,go 自带的 map 容器依然是优先选择。
主要考虑可以用 <、== 比较的类型,对一不可以的,需要支持自定义的比较函数。// 对于Key可以用 < 和 == 运算符比较的类型,调这个函数来创建
func NewSkipList[K Ordered, V any]() *SkipList[K, V]// 其他情况,需要自定义Key类型的比较函数
func NewSkipListFunc[K any, V any](keyCmp CompareFn[K]) *SkipList[K, V]
// 从一个map来构建,仅为方便写Literal,go没法对自定义类型使用初始化列表。
func NewSkipListFromMap[K Ordered, V any](m map[K]V) *SkipList[K, V]
IsEmpty() bool // 表是否为空
Len() int // 返回表中元素的个数
Clear() // 清空跳表
Has(K) bool // 检查跳表中是否存在指定的key
Find(K) *V // Finds element with specific key.
Insert(K, V) // Inserts a key-value pair in to the container or replace existing value.
Remove(K) bool // Remove element with specific key.
还有迭代器和遍历区间查找等功能与本主题关系不大略去。
可以看得出,完全可以满足有序 Map 容器的要求。
虽然不少讲跳表原理示意图会把每层的索引节点单独列出来:
出处:Skip List--跳表(全网最详细的跳表文章没有之一)
但是一般的实现都会把索引节点实现为最底层节点的一个数组,这样每个元素只需要一个节点,节省了单独的索引节点的存储开销,也提高了性能。
因此节点定义如下:
type skipListNode[K any, V any] struct {
key K
value V
// 指向下一个节点的指针的数组,不同深度的节点长度不同,[0]表示最下层
next []*skipListNode[K, V]
}
代码并非完全从头开始写的,我是以 [email protected] 的 gostl 的实现为基础的。
https://github.com/liyue201/gostl/blob/master/ds/skiplist/skiplist.go
这个实现比较简洁,只有 200 多行代码,支持自定义数据类型比较,但是不支持泛型。
我在他的基础上做了一系列的算法和内存分配等方面的优化,并增加了迭代器、区间查找等功能。
每次跳表插入元素时,需要随机生成一个本次的层数,最朴素的实现方式是抛硬币:
func randomLevel() int {
level := 0
for math.Float64() < 0.5 {
level++
}
return level
}
也就是根据连续获得正面的次数来决定层数。
Redis 里的算法类似,只不过用的是 1/4 的级数差,索引少一半,可以节省一些内存:
https://github.com/redis/redis/blob/7.0/src/t_zset.c#L118-L128
/* Returns a random level for the new skiplist node we are going to create.
* The return value of this function is between 1 and ZSKIPLIST_MAXLEVEL
* (both inclusive), with a powerlaw-alike distribution where higher
* levels are less likely to be returned. */
int zslRandomLevel(void) {
static const int threshold = ZSKIPLIST_P*RAND_MAX;
int level = 1;
while (random() < threshold)
level += 1;
return (level<ZSKIPLIST_MAXLEVEL) ? level : ZSKIPLIST_MAXLEVEL;
}
简单直白。但是存在两个问题:
所以在 gostl 的实现中,改用了生成一个某范围内的随机数,根据其均匀分布的特点,来计算 level:
func (sl *Skiplist) randomLevel() int {
total := uint64(1)<<uint64(sl.maxLevel) - 1 // 2^n-1
k := sl.rander.Uint64() % total
levelN := uint64(1) << (uint64(sl.maxLevel) - 1) level := 1
for total -= levelN; total > k; level++ {
levelN >>= 1
total -= levelN
}
return level
}
这些for循环有些拗口,改写一下就更清晰了:
level := 0
for k < total {
levelN >>= 1
total -= levelN
level++
}
也就是生成的随机数
也就是生成的随机数越小,level 越高,比如 maxLevel 为 10 时,total=1023,那么:
当 level 比较高时,循环次数就会增加。不过可以观察到在生成的随机二进制中,数值增减一半正好等于改变一个 bit 位,因此我改用直接调用 math/bits 里的 Len64()函数来计算生成的随机数的最小位数的方式来实现:
func (sl *SkipList[K, V]) randomLevel() int {
total := uint64(1)<<uint64(skipListMaxLevel) - 1 // 2^n-1
k := sl.rander.Uint64() % total
return skipListMaxLevel - bits.Len64(k) + 1
}
而 Len64 函数是用查表实现的,相当的快:
https://github.com/golang/go/blob/go1.19/src/math/bits/bits.go#L330-L345
// Len64 returns the minimum number of bits required to represent x;
// the result is 0 for x == 0.
func Len64(x uint64) (n int) {
// ...
return n + int(len8tab[x])
}
这样当 level>1 时,时间开销就从循环变成固定开销,会快一点点。
很多实现都把 level 硬编码成全局或者实例级别的常量,比如在 gostl 中就是如此。
sl.maxLevel 是一个实例级别的固定常量,跳表创建后便不再修改,因此有两个问题:
因此我把 level 设计为根据元素的个数动态自适应调整:
通过这种方式,就解决了上述问题。
// Insert inserts a key-value pair into the skiplist.
// If the key is already in the skip list, it's value will be updated.
func (sl *SkipList[K, V]) Insert(key K, value V) {
// 处理key已存在的情况,略去 level := sl.randomLevel()
node = newSkipListNode(level, key, value)
// 插入链表,略去
if level > sl.level {
// Increase the level
for i := sl.level; i < level; i++ {
sl.head.next[i] = node
}
sl.level = level
}
sl.len++
}
另外为了防止万一在一开始元素个数很小时就生成了很大的随机 level,在 randomLevel 里做了一下限制,最大允许生成的 level 为 log2(Len())+2。2 是个拍脑袋决定的余量。
插入时如果 key 不存在或者删除时节点存在,都需要找到每层索引中的前一个节点,放入 prevs 数组返回,用于插入或者删除节点后各层链表的重新组织。
gostl 的实现中,是先在 findPrevNodes 函数里的循环中得到所有的 prevs,然后再比较[0]层的值来判断 key 是否相等决定更新或者返回。
这个函数会从顶层遍历到最底层:
func (sl *Skiplist) findPrevNodes(key interface{}) []*Node {
prevs := sl.prevNodesCache
prev := &sl.head
for i := sl.maxLevel - 1; i >= 0; i-- {
if sl.head.next[i] != nil {
for next := prev.next[i]; next != nil; next = next.next[i] {
if sl.keyCmp(next.key, key) >= 0 {
break
}
prev = &next.Node
}
}
prevs[i] = prev
}
return prevs
}
插入时再取最底层的节点的下一个进一步比较是否相等
// Insert inserts a key-value pair into the skiplist
func (sl *Skiplist) Insert(key, value interface{}) {
prevs := sl.findPrevNodes(key) if prevs[0].next[0] != nil && sl.keyCmp(prevs[0].next[0].key, key) == 0 {
// 如果相等,其实prevs就没用了,但是findPrevNodes里依然进行了查询
// same key, update value
prevs[0].next[0].value = value
return
}
...
}
但是再插入 key 时如果已经节点存在,或者删除 key 时节点不存在,是不需要调整每层节点的,前面辛辛苦苦查找的 prevs 就没用了。
我在这里做了个优化,在这种情况下提前返回,不再继续找所有的 prevs。以插入为例:
// findInsertPoint returns (*node, nil) to the existed node if the key exists,
// or (nil, []*node) to the previous nodes if the key doesn't exist
func (sl *skipListOrdered[K, V]) findInsertPoint(key K) (*skipListNode[K, V], []*skipListNode[K, V]) {
prevs := sl.prevsCache[0:sl.level]
prev := &sl.head
for i := sl.level - 1; i >= 0; i-- {
for next := prev.next[i]; next != nil; next = next.next[i] {
if next.key == key {
// Key 已经存在,停止搜索
return next, nil
}
if next.key > key {
// All other node in this level must be greater than the key,
// search the next level.
break
}
prev = next
}
prevs[i] = prev
}
return nil, prevs
}
node和prevs只会有一个不空:
// Insert inserts a key-value pair into the skiplist.
// If the key is already in the skip list, it's value will be updated.
func (sl *SkipList[K, V]) Insert(key K, value V) {
node, prevs := sl.impl.findInsertPoint(key)
if node != nil {
// Already exist, update the value
node.value = value
return
}
// 生成及插入新节点,略去
}
删除操作的优化方式类似,不再赘述。
对于 Ordered 类型的跳表,如果是升序的,可以直接用 NewSkipList 来创建。对于用得较少的降序或者 Key 是不可比较的类型,就需要通过传入的比较函数来比较 Key。
一开始的实现为了简化,对于 Ordered 的 SkipList,内部是通过调用 SkipListFunc 来实现的,这样可以节省不少代码,实现起来很简单。
但是 Benchmark 时,跑不过一些较快地实现。分析主要原因就在比较函数的函数调用上。以查找为例:
// Get returns the value associated with the passed key if the key is in the skiplist, otherwise returns nil
func (sl *Skiplist) Get(key interface{}) interface{} {
var pre = &sl.head
for i := sl.maxLevel - 1; i >= 0; i-- {
cur := pre.next[i]
for ; cur != nil; cur = cur.next[i] {
cmpRet := sl.keyCmp(cur.key, key)
if cmpRet == 0 {
return cur.value
}
if cmpRet > 0 {
break
}
pre = &cur.Node
}
}
return nil
}
在 C++中,比较函数可以是无状态的函数对象,其()运算符是可以 inline 的。但是在 Go 中,比较函数只能是函数指针,sl.keyCmp 调用无法被 inline。因此对简单的类型,这部分开销占的比例很大。
我一开始用的优化手法是在运行期间,根据硬编码的 key 的类型,进行类型转换后调优化的实现
https://github.com/chen3feng/stl4go/commit/1d444f1530cc43c99a978dcf0b1d7f83bcb575ee#diff-37795d4525025da36a8f77e3e5d0b3f6593fd121960e1d563008a6700fb08473
这种方式虽然凑效但是代码很丑陋,用到了硬编码的类型列表,运行期类型 switch 等机制,甚至还需要代码生成。
后来我摸索出通过同一个接口,根据 Key 是作为 Ordered 还是通过 Func 的方式来比较,来提供了不同实现的方式,就更优雅地解决了这个问题,不需要任何强制类型转换:
type skipListImpl[K any, V any] interface {
findNode(key K) *skipListNode[K, V]
lowerBound(key K) *skipListNode[K, V]
upperBound(key K) *skipListNode[K, V]
findInsertPoint(key K) (*skipListNode[K, V], []*skipListNode[K, V])
findRemovePoint(key K) (*skipListNode[K, V], []*skipListNode[K, V])
}// NewSkipList creates a new SkipList for Ordered key type.
func NewSkipList[K Ordered, V any]() *SkipList[K, V] {
sl := skipListOrdered[K, V]{}
sl.init()
sl.impl = (skipListImpl[K, V])(&sl)
return &sl.SkipList
}
// NewSkipListFunc creates a new SkipList with specified compare function keyCmp.
func NewSkipListFunc[K any, V any](keyCmp CompareFn[K]) *SkipList[K, V] {
sl := skipListFunc[K, V]{}
sl.init()
sl.keyCmp = keyCmp
sl.impl = skipListImpl[K, V](&sl)
return &sl.SkipList
}
对于 Len()、IsEmpty()等,则不放进接口里,有利于编译器 inline 优化。
无论是理论上还是实测,内存分配对性能的影响还是挺大的。Go 不像 Java 和 C#的堆内存分配那么简单,因此应当减少不必要的内存分配。
在插入时如果节点先前不存在,或者删除时节点存在,那么就需要获得所有层的指向该位置的节点数组,这倒不是我原创的,因为看到的好几个实现中都采用了在 SkipList 实例级别预先分配一个 slice 的办法,经测试比起每次都创建 slice 返回确实有相当明显的性能提升。
不同 level 的节点数据类型是相同的,但是其 next 指针数组的长度不同,一些简单粗暴的实现是设置为固定的最大深度,由于跳表中绝大多数节点都只落在最低几层,浪费了较多的内存。
另外一种做法是改为动态分配,那么就多一次内存分配。
我的做法是根据不同的深度,定义不同的结构体,额外包含一个相应长度的 nexts 节点指针数组,然后在 node 的 next 切片指向这个数组,可以就减少一次内存分配。并且由于 nexts 数组和 node 的地址是在一起的,cache 局部性也更好。
https://github.com/chen3feng/stl4go/blob/master/skiplist_newnode.go
// newSkipListNode creates a new node initialized with specified key, value and next slice.
func newSkipListNode[K any, V any](level int, key K, value V) *skipListNode[K, V] {
switch level {
case 1:
n := struct {
head skipListNode[K, V]
nexts [1]*skipListNode[K, V]
}{head: skipListNode[K, V]{key, value, nil}}
n.head.next = n.nexts[:]
return &n.head
case 2:
n := struct {
head skipListNode[K, V]
nexts [2]*skipListNode[K, V]
}{head: skipListNode[K, V]{key, value, nil}}
n.head.next = n.nexts[:]
return &n.head
// 一直到 case 40 ...
}
}
这么多啰嗦的代码显然不适合手写,是弄个 bash 脚本通过 go generate 生成的。
https://github.com/chen3feng/stl4go/blob/master/skiplist_newnode_generate.sh
另外我在调试这段代码时发现 go 的 switch case 语句即使对简单的全数值居然也是通过二分法而非 C++常用的跳转表来实现的。不过估计是因为有更耗时的内存分配的原因,尝试把 case 1,2 等单独拿出来也没有提升,因此估计这里对性能没有影响。如果 case 非常多的话可以考虑对最常见的 case 单独处理,或者用函数指针数组来优化。
类似的代码在 C++中由于支持模板非类型参数,可以简单不少:
template <typename K, typename V>
struct Node {
K key;
V value;
size_t level;
Node* nexts[0];
SkipListNode(key, V value) : level(level), key(std::move(key)), value(std::move(value)) {}
};template <typename K, typename V, int N> // 注意 N 可以作为模板参数
struct NodeN : public Node {
NodeN(K key, V value) : Node(N, key, value) {}
Node* nexts[N] = {};
};
Node* NewNode(int level, K key, V value) {
switch (level) {
case 1: return new NodeN<K, V, 1>(key, value);
case 2: return new NodeN<K, V, 2>(key, value);
case 3: return new NodeN<K, V, 3>(key, value);
...
}
}
用 C(当然在 C++中也可以用)的flexible array代码则会更简单一些:
Node* NewNode(int level, K key, V value) {
auto p = malloc(sizeof(Node*) + level * sizeof(Node*));
return new(p) Node(std::move(key), std::move(value));
}
而且由于 C 和 C++中的 next 数组不需要通过切片(相当于指针)来指向 nexts 数组,少了一次内存寻址,理论上性能更好一些。
C++实现为 Go 代码的手工转译,功能未做充分的验证,仅供对比评测,代码在:
https://github.com/chen3feng/skiplist-survey/tree/master/skiplist
[email protected] 实现了一个以 float64 为 key 的跳表:
https://github.com/sean-public/fast-skiplist
并和其他实现做了个比较证明自己的最快:
https://github.com/sean-public/skiplist-survey
我在他的基础上添加了一些其他的实现和我的实现,做了 benchmark,上述优化的数据类型优化就是基于此评测结果做的。
https://github.com/chen3feng/skiplist-survey
以下是部分评测结果,数值越小越好:
虽然也有少量指标不是最快的,但是总体上在大部分指标上,超越了我在 github 上找到的其他实现。并且大部分其他实现 key 只支持 int64 或者 float64,使得无法用于 string 等类型。
另外也对 C++的实现测了一下性能:
发现 Go 的实现性能很多指标基本接近 C++,其中 Delete 反而更快一些,是因为 C++在删除时要析构节点并释放内存,而 Go 采用 GC 的方式延后旁路处理。
1)go1.18 引入的泛型还可以,虽然功能上不算很强大,但是已经能满足挺大一部分的需求。我们组现在正在升级到 go1.19,很快就能用得上。
2)Go 的开发生态还是不错的,github 上大量垂手可得的库,VS Code 高度集成,各种便利的工具,这是我写 C++代码很难体验到的。大部分优化是基于 benchmark test 来做的。
3)很多编程语言需要的基础知识都是相通的,打好基础,学习新技术并不太难。
4)跳出自己的舒适区,多学习一些编程语言开阔视野涨见识,有利于持续提高自己的技术能力。
参考资料