摘要:2016 年,AlphaG o 一连战胜多位人类职业围棋选 手,从此一炮而红,各种下棋机器人近几年也层出不穷。那么,你是否想过要自己做一个呢?
链 接:https://zserge.com/posts/carnatus/
声明:本文为 CSDN 翻译,未经允许禁止转载。
在这篇文章中,我们来尝试将国际象棋引擎Sunfish (https://github.com/thomasahle/sunfish) 移植到 Go 语言,从而了解国际象棋引擎的工作原理。Sunfish 是一个简单而又小巧的库,但下棋水平还不错。而 Go 是一种简单且可读性很强的编程语言,所以我打算将二者强强联合。
构建国际象棋引擎必须考虑以下三个主要方面:
如何表示棋盘 (棋格、棋子、走位) 。
如何判断输赢。
如何搜索最佳走位。
本文中的代码片段经过了简化,仅包含核心部分,完整代码请参见:https://github.com/zserge/car natus。
1、
首先,我们需要找到一种方便且内存使用效率很高的方法来表示棋盘,因为在搜索最优走位期间,我们需要将数千个棋盘保存在内存中。
棋盘通常表示为格子的阵列。我们会在传统的 8x8 棋盘周围添加一些额外的填充,这样无效的棋子走位会落入这片填充区域,免去边界检查,并且可以大大简化代码。
这里,我们将使用线性数组。移动距离最长的棋子是马,移动格数为 2 格。当然,其他走直线的棋子可以移动更远的距离,但这些走位可以逐步计算,而且如果走位到达棋盘边界,就能更快结束计算。
所以,我们需要在棋盘周围添加 2 个棋格大小的填充,即创建一块 12x12 的棋盘,用一个线性数组来表示。但其实,我们只需要一块 12x10 的棋盘,因为上一行最右边的填充也可以作为下一行最左边的填充,如下所示 (x 代表填充) :
用本文的符号表示的话, “a1”的位置是 9×10+1=91,而“a8”将是“2×10+1”=21。
棋盘数组中的每个格子代表一个棋子、一个空白棋格或填充。我们可以使用数字常量来保存这些值,但为了方便调试,我们使用方便人类阅读的字符:大写字母和小写字母代表棋子,空格为填充,点代表空白棋格,如下所示:
下面,我们来写代码:
type Piece byte
func (p Piece) Value() int { ... }
func (p Piece) Ours() bool { ... }
func (p Piece) Flip() Piece { ... }
type Board [120]piece
func (b Board) Flip() Board { ... }
type Square int
func (s Square) Flip() Square { ... }
每个棋子都有其价值。 我们需要根据棋子的价值来评估局势,并计算哪方会获胜。 一般,兵 = 100,马 = 280,象 = 320,车 = 479,后 = 929,王应该设置成一个非常大的数字,至少要大于 8 个后(兵会升变成后)+ 两个马、两个象和两个车。 这样就算我们拥有所有这些棋子,只丢了王,结果依然会被判定为负。
每种类型都有一个 Flip() 方法,其返回值相当于在对手行动之前翻转棋盘。对于棋子来说,该方法将改变棋子符号的大小写。对于空白棋格,该方法将返回119 - s (即从棋盘的另一端开始数) 。对于整个棋盘,该方法将以逆序复制所有棋子,然后再翻转每个棋子的大小写。
2、
基本模块构建好后,接下来我们考虑局势。这里的“局势”指的是棋盘上的棋子,以及一些额外的棋盘状态,例如允许吃过路兵的棋格、妨碍王车易位的棋格、是否允许王车易位等等。为了简化游戏,我们可以重用 Board 类型,但此处我们来单独创建一个 Position 类型,负责棋盘走位以及价值的计算。
走位是由两个棋格构成的元组,即棋子移动前所在的棋格和棋子移动后所在的棋格。而局势指的是一个棋盘、分值、每个玩家的王车易位规则以及吃过路兵的棋格、王车易位妨碍棋格等。这两种类型都有一个 Flip() 方法。
type Move struct {
from Square
to Square
}
func (m Move) Flip() Move { ... }
type Position struct {
board Board // current board
score int // board score, the higher the better
wc [2]bool // white castling possibilities
bc [2]bool // black castling possibilities
ep Square // en-passant square where pawn can be captured
kp Square // king passent during castling, where kind can be captured
}
func (p Position) Flip() Position { ... }
br
下面,我们来编写一个重要的方法: 有效走位生成器。 我们只关心白棋,因为黑棋只需要翻转棋盘,然后当作白棋来走即可。
为了生成所有的有效走位,我们需要:
生成一个列表,列出每个棋子在每个方向上移动一步的结果;
遍历所有棋格,忽略非白色棋格;
对于每个白色棋子向每个有效方向移动一步;
如果棋子不是只能移动一步的棋子 (不是兵、马或国王) ,则一直移动到遇到障碍物为止,如对手的棋子或棋盘填充。
这里的代码做了简化,并没有考虑吃过路兵、王车易位等。完整的实现,请参见 GitHub 代码库 (https://github.com/zserge/carnatus) 。
为了方便阅读,我们使用常量 N/E/S/W 来表示方向:
const N, E, S, W = -10, 1, 10, -1
var directions = map[Piece][]Square{
'P': {N, N + N, N + W, N + E},
'N': {N + N + E, E + N + E, E + S + E, S + S + E, S + S + W, W + S + W, W + N + W, N + N + W},
'B': {N + E, S + E, S + W, N + W},
'R': {N, E, S, W},
'Q': {N, E, S, W, N + E, S + E, S + W, N + W},
'K': {N, E, S, W, N + E, S + E, S + W, N + W},
}
func (pos Position) Moves() (moves []Move) {
for index, p := range pos.board {
if !p.ours() {
continue
}
i := Square(index)
for _, d := range directions[p] {
for j := i + d; ; j = j + d {
q := pos.board[j]
if q == ' ' || (q != '.' && q.ours()) {
break
}
if p == 'P' {
if (d == N || d == N+N) && q != '.' {
break
}
if d == N+N && (i < A1+N || pos.board[i+N] != '.') {
break
}
}
moves = append(moves, Move{from: i, to: j})
if p == 'P' || p == 'N' || p == 'K' || (q != ' ' && q != '.' && !q.ours()) {
break
}
}
}
}
return moves
}
以上就是我们需要考虑的所有国际象棋规则,根据这些规则就能有效移动棋子。 下一步是根据移动后的位置生成新的局势。 具体的代码如下,注意这里没有考虑吃过路兵、兵升变、王车易位等:
func (pos Position) Move(m Move) (np Position) {
np = pos
np.board[m.to] = pos.board[m.from]
np.board[m.from] = '.'
return np.Flip()
}
这个方法非常简单,移动棋子,然后将之前的棋格标记为空,并翻转棋盘。 完整的实现请参见 GitHub,其中包含有关兵和王的特殊移动。
到这里,我们就可以由两个玩家来控制下棋了,或者也可以制作一个傻瓜式国际象棋引擎,随机下棋直至一方输掉。
但是,我们如何判定输赢呢?
3、
每个棋盘位置都有一个分值。最初,这个分值为零,因为两个玩家的局势完全对等。等到一方移动棋子后,棋盘的分值就会发生改变,具体取决于哪些棋子被吃,以及棋子对局势的影响。
最简单的方法是直接数一数棋盘上的棋子,并求出棋子价值的总和 (减去对手的棋子) ,这样我们就能知道何时被将军,但这个计算太粗糙了。
一种更好且非常简单的方法是使用棋子棋格表 (Piece-Square Tables,简称 PST) 。我们为每个棋子创建一个表格,大小与棋盘相同,并为每个棋格分配一个价值。这些值是经验值,所以我借用了 Sunfish 引擎中的 PST 值。
事实上,更好的国际象棋引擎会在游戏的过程中修改变 PST 表,因为棋子的价值会随着时间而改变 (棋子在残局中更有价值) 。但是,我们的引擎还是采用较为简单的处理。
为了计算移动后的局势,我们需要:
取当前位置的分值;
减去移动棋子的 PST 值;
加上新的 PST 值;
如果吃掉了棋子,则加上相应的价值。
此外,我们需要在王车易位时调整车的 PST 值,并在吃过路兵或兵升变时调整兵的 PST 值。但本文中省略了:
var pst = map[Piece][120]int{
'P': { ... },
'N': { ... },
'B': { ... },
'R': { ... },
'Q': { ... },
'K': { .... },
}
func (pos Position) value(m Move) int {
i, j := m.from, m.to
p, q := Piece(pos.board[i]), Piece(pos.board[j])
// Adjust PST for the moving piece
score := pst[p][j] - pst[p][i]
if q != '.' && q != ' ' && !q.ours() {
// Adjsut PST for captured piece
score += pst[q.Flip()][j.Flip()]
}
return score
}
这样引擎的改进就完成了,它能够选择最佳走位,而不是随机走位了。 实际上,真正的国际象棋引擎会更进一步,分析每一方可能的走法,并从最长远的角度找到最佳走法。
4、
娱乐性质的国际象棋引擎中,最流行的搜索算法是深度优先搜索。我们从根开始,下降到一定的深度,迭代所有可能的走位,然后回溯。对于每个可能的走位,我们使用“Alpha-beta 剪枝”的“极小化极大算法”计算局势的分值。
“极小化极大算法”是一种规则,可将最坏情况下的潜在损失降至最低,这里玩家需要考虑对手的所有最优走位,并选择在对手采用最佳策略的情况下得分最高的走位。
单一的“极小化极大算法”对于国际象棋引擎来说太慢了,因为它需要深入迭代太多的走位,才能找到最优解。 我们可以 利用 “Alp h a-be ta 剪 枝”删除没 必要考虑到节点,从而提高“极小化极大算法”的速度。
“Alpha-beta 剪枝”的基本思路如下: 假设你正在下棋,发现了很好的一步 A,而后发现 B 似乎更好。 但经 过深入思考后 ,你发现如果选择 B,对手会在几步之内将死你。 所以,你根本不会考虑 B,也不会浪费时间去调查 B 的其他可能结果。
“Alpha-beta 剪枝”和“极小化极大算法”对于理解国际象棋引擎的工作原理非常重要。Sunfish 引擎使用的是改进后的 MDF(f) 搜索算法,这也是带有剪枝的极小极大算法的变体。
我们的引擎将逐渐增加搜索深度,并调用 MDF(f) 算法来查找最佳分值的下限和上限。MDF(f) 算法将使用带局势缓存的 A/B 修剪迭代—— 局势缓存是一种缓存,用 于保存每个棋盘的局势,以及移动到该位置的深度、得分和走位。 之后,在考虑一个新局 势 时,我们就可以先从局势表中查找。
这里省略了搜索算法的代码,实际上其中只包含几行递归搜索。完整的源代码请参见 GitHhub。
5、
如果你对小型的国际象棋引擎感兴趣,我强烈 建议你试试看 Sunfish。
最后,我在这个用 Go 语言编写的引擎中 添加了一个 UCI 协议实现,并结合了PyCh ess UI。 虽然这个引擎十分粗糙,需要改进的地方很多,但此次尝试非常有趣,我真的亲手实现了一个可以玩的国际象棋程序。
推荐阅读