优化顶层设计框架,守护工业领域数据安全
日期:2022年12月16日 阅:91
数据安全是数据发挥生产要素价值的前提条件,在《中华人民共和国网络安全法》《中华人民共和国数据安全法》《工业和信息化领域数据安全管理办法(试行)》《工业数据分类分级指南(试行)》等一系列法律和政策文件中都明确提出了加强数据安全的要求。
1
工业和信息化领域数据安全顶层设计
工业和信息化领域数据安全保护的总体设计框架围绕工业数字化改革总目标,基于“创新引领、数据驱动、开放合作”原则,提升数据安全主动防御能力、监测预警能力、应急处置能力、协同治理能力,打造工业企业数字化改革数据安全屏障。总体设计以全面构建工业数据安全防护体系为重点,从安全角度出发,在数据安全运行能力为支撑基础上,建设完善数据安全政策制度、标准规范、组织保障、人才体系,从而实现高效安全监测,达到综合有效安全治理目标。
面向工业企业数据安全需求,绿盟科技提出了“1+2+3+4+5+N”的架构设计,实现工业数据安全的重点防护。“1”是1个中心-以敏感数据保护为中心,“2”是2类数据-重要数据和核心数据,“3”是3个体系-数据安全治理体系、个人信息保护体系、数据出境合规体系,“4”是4个工作建设-组织建设、制度流程、技术工具、人员能力领域,“5”是5个落地步骤-知、识、控、察、行,“N”是N种安全技术能力。
1.1 以敏感数据保护为中心
在开展数据安全保护的过程中,要坚持以敏感数据保护为核心,建设完善的数据安全体系,有效保护数据在全生命周期过程中各阶段的安全,达到合法采集、合理利用、静态可知、动态可控的防护目标。
1.2 重点保护重要和核心数据
根据《工业和信息化领域数据安全管理办法(试行)》的规定,对重要数据进行重点保护,对核心数据在重要数据保护基础上实施更严格的管理和保护。此外,将重要数据和核心数据目录报送地方工业和信息化主管部门或通信管理局,并采取措施开展数据分级防护。
1.3 多体系共建数据安全机制
根据工业行业数据风险分析以及业务需求,通过数据安全治理体系、个人信息保护体系、数据出境合规体系等多个维度进行体系化建设,完善和提升工业数据安全制度、技术、运营服务保障能力。确定数据处理活动主体责任方,根据数据的类型、数量、安全级别、处理方式以及对国家安全、公共利益或者个人、组织合法权益带来的影响和安全风险等,采取必要措施确保数据持续处于有效保护和合法利用的状态。
1.4 同步开展多层次数据安全建设
在数据安全建设体系中,从组织建设、制度流程,技术工具,人员能力四个领域同步开展建设工作,管理是技术的运营依据,技术是管理的落地保障。
1.5 五步法打造工业数据安全堡垒
绿盟科技经过多年网络安全及数据安全的探索与实践,并结合工业企业的现状需求,借鉴Gartner的数据安全治理框架,总结出了一套完整科学的数据安全治理方法,即“知”、“识”、“控”、“察”、“行”的数据治理设计框架,实现数据安全的整体性防御与前瞻性技术防御保障,是大数据架构下数据安全性防护理论与实践相结合的一整套治理手段。
1.6 安全基础能力的提升
安全基础能力,指提供数据安全能力的各类安全产品,是数据安全立体化的纵深防御体系的基础。形态上可以是硬件,也可以是虚拟化形态。安全基础能力,包含身份基于零信任的统一身份认证、管理能力,数据智能防泄漏能力,数据脱敏能力,文件级智能动态加解密能力,智能联动防护能力以及密码管理、安全审计和隐私计算等。
2
助力工业企业数据安全落地
通过绿盟科技数据安全治理顶层设计与最佳实践,帮助国内某上市制造企业全面构建“1+2+3+4+5+N”体系化防御能力。结合企业实际的数据安全防护需求,精准识别出企业在研发设计、生产制造、经营管理、日常运维、应用服务等过程中收集和产生的数据资产,形成重要数据和核心数据目录清单,同时结合研发设计、生产运行、装置远程诊断、内部运维、供应链等应用场景,实施分类定策、分级定措的防护策略,覆盖工业数据全生命周期各阶段,实现企业纵深防御能力。
该制造企业以绿盟数据安全运营平台为抓手,通过数据资产稽核管理、自动化分类分级、数据安全风险监测、API接口安全管理、数据安全流转监控、数据安全合规管理和数据安全策略统一管控等多种先进技术与AI算法,让数据所有者看得见风险、让数据使用者看得到约束、让服务运营者看得到策略,高效应对数据安全风险与挑战,促进工业企业数字化转型高质量发展。