1.适用于除Windows CE之外的各种Windows平台.在使用这个模型之前应该确保该系统安装了Winsock2.重叠模型的基本设计原理是使用一个重叠的数据结构,一次投递一个或多个Winsock I/O请求。在重叠模型中,收发数据使用WSA开头的函数。
2.WSA_FLAG_OVERLAPPED标志:要使用重叠模型。在创建套接字的时候,必须加上该标志。
SOCKET s=WSASocket(AF_INET,SOCK_STREAM,0,NULL,0,WSA_FLAG_OVERLAPPED);
假如使用的是socket函数,而非WSASocket函数,那么会默认设置WSA_FLAG_OVERLAPPED标志。若随一个WSAFLAGOVERLAPPED结构一起调用这些以WSA开头的函数(AcceptEx和TRansmiteFile函数例外),函数会立即完成并返回,无论套接字是否设为阻塞模式3.重叠模型在网络事件完成后,可以有两种方式通知应用程序:事件通知和完成例程
3.事件通知:事件对象与WSAOVERLAPPED进行绑定实现网络事件完成后通过事件进行通知。
4.WSAOVERLAPPED结构:
typedef struct WSAOverlapped{ DWORD Internal; DOWRD InternalHigh; DWORD Offset; DWORD OffsetHigh; WSAEVENT hEvent;}WSAOVERLAPPED,FAR* LPWSAOVERLAPPED;
此处,程序员可以使用的是最后一个参数hEvent,其余的不用管。通过该参数,重叠结构可以与事件对象进行绑定,以实现网络事件完成后,通过事件对象进行通知应用程序。事件对象通知方式是通过创建一个事件对象,把该对象赋值给重叠结构的hEvent参数即可实现绑定。在此再次提醒大家注意:WSAWaitForMultipleEvents函数一次最多只能等待64个事件对象。
5.WSAGetOverlappedResult函数:重叠请求完成后,接着需要调用WSAGetOverlappedResult(取得重叠结构)函数,判断那个重叠调用到底是成功,还是失败.
BOOL WSAGetOverlappedResult( SOCKET s,//套接字 LPWSAOVERLAPPED lpOverlapped,//重叠结构 LPDWORD lpcbTransfer,//对应一个DWORD(双字节)变量,一次重叠实际传输(接收或者发送)的字节数 BOOL fWait,//参数用于决定函数是否应该等待一次重叠操作完成。LPWORD lpdwFlags );
重叠操作完成,函数返回TRUE,否则,返回FALSE。返回FALSE通常都是有一下几种情况造成的.
(1)重叠I/O操作仍处在未完成状态
(2)重叠操作已经完成,但含有错误
(3)重叠操作的完成状态不可判决,因为在提供给函数WSAGetOverlappedResult的一个或多个参数中,存在着错误。失败后,由lpcbTransfer参数指向的值不会进行更新,而且我们的应用程序应调用WSAGetLastError函数
6.基于事件通知的重叠模型编程步骤如下:
(1) 创建一个套接字,绑定本机端口,在指定的端口上监听连接请求。
(2)接受连接请求。
(3)为接受的套接字新建一个WSAOVERLAPPED结构,并为该结构分配一个事件对象句柄。也将事件对象句柄分配给一个事件数组,以便稍后由函数WSAWaitForMultipleEvents使用。
(4)在套接字上投递一个异步WSARecv请求,指定参数为WSAOVERLAPPED结构。注意函数通常会以失败告终,返回SOCKETERROR错误状态WSAIOPENDING(I/O操作尚未完成)。
(5)使用步骤3)的事件数组,调用WSAWaitForMultipleEvents函数,并等待与重叠调用关联在一起的事件进入“已传信”状态(换言之,等待那个事件的“触发”)。
(6)WSAWaitForMultipleEvents函数完成后,针对事件数组,调用WSAResetEvent(重设事件)函数,从而重设事件对象,并对完成的重叠请求进行处理。
(7)使用WSAGetOverlappedResult函数,判断重叠调用的返回状态是什么。
(8)在套接字上投递另一个重叠WSARecv请求。
(9)重复步骤5 ) ~ 8 )。
服务端设计案例
#include <Mswsock.h>
#include <stdio.h>
#include <windows.h>
CInitSock theSock;
#define BUFFER_SIZE 1024
typedef struct _SOCKET_OBJ
{
SOCKET s; // 套节字句柄
int nOutstandingOps; // 记录此套节字上的重叠I/O数量
LPFN_ACCEPTEX lpfnAcceptEx; // 扩展函数AcceptEx的指针(仅对监听套节字而言)
} SOCKET_OBJ, *PSOCKET_OBJ;
typedef struct _BUFFER_OBJ
{
OVERLAPPED ol; // 重叠结构
char *buff; // send/recv/AcceptEx所使用的缓冲区
int nLen; // buff的长度
PSOCKET_OBJ pSocket; // 此I/O所属的套节字对象
int nOperation; // 提交的操作类型
#define OP_ACCEPT 1
#define OP_READ 2
#define OP_WRITE 3
SOCKET sAccept; // 用来保存AcceptEx接受的客户套节字(仅对监听套节字而言)
_BUFFER_OBJ *pNext;
} BUFFER_OBJ, *PBUFFER_OBJ;
HANDLE g_events[WSA_MAXIMUM_WAIT_EVENTS]; // I/O事件句柄数组
int g_nBufferCount; // 上数组中有效句柄数量
PBUFFER_OBJ g_pBufferHead, g_pBufferTail; // 记录缓冲区对象组成的表的地址
// 申请套节字对象和释放套节字对象的函数
PSOCKET_OBJ GetSocketObj(SOCKET s)
{
PSOCKET_OBJ pSocket = (PSOCKET_OBJ)::GlobalAlloc(GPTR, sizeof(SOCKET_OBJ));
if(pSocket != NULL)
{
pSocket->s = s;
}
return pSocket;
}
void FreeSocketObj(PSOCKET_OBJ pSocket)
{
if(pSocket->s != INVALID_SOCKET)
::closesocket(pSocket->s);
::GlobalFree(pSocket);
}
PBUFFER_OBJ GetBufferObj(PSOCKET_OBJ pSocket, ULONG nLen)
{
if(g_nBufferCount > WSA_MAXIMUM_WAIT_EVENTS - 1)
return NULL;
PBUFFER_OBJ pBuffer = (PBUFFER_OBJ)::GlobalAlloc(GPTR, sizeof(BUFFER_OBJ));
if(pBuffer != NULL)
{
pBuffer->buff = (char*)::GlobalAlloc(GPTR, nLen);
pBuffer->ol.hEvent = ::WSACreateEvent();
pBuffer->pSocket = pSocket;
pBuffer->sAccept = INVALID_SOCKET;
// 将新的BUFFER_OBJ添加到列表中
if(g_pBufferHead == NULL)
{
g_pBufferHead = g_pBufferTail = pBuffer;
}
else
{
g_pBufferTail->pNext = pBuffer;
g_pBufferTail = pBuffer;
}
g_events[++ g_nBufferCount] = pBuffer->ol.hEvent;
}
return pBuffer;
}
void FreeBufferObj(PBUFFER_OBJ pBuffer)
{
// 从列表中移除BUFFER_OBJ对象
PBUFFER_OBJ pTest = g_pBufferHead;
BOOL bFind = FALSE;
if(pTest == pBuffer)
{
g_pBufferHead = g_pBufferTail = NULL;
bFind = TRUE;
}
else
{
while(pTest != NULL && pTest->pNext != pBuffer)
pTest = pTest->pNext;
if(pTest != NULL)
{
pTest->pNext = pBuffer->pNext;
if(pTest->pNext == NULL)
g_pBufferTail = pTest;
bFind = TRUE;
}
}
// 释放它占用的内存空间
if(bFind)
{
g_nBufferCount --;
::CloseHandle(pBuffer->ol.hEvent);
::GlobalFree(pBuffer->buff);
::GlobalFree(pBuffer);
}
}
PBUFFER_OBJ FindBufferObj(HANDLE hEvent)
{
PBUFFER_OBJ pBuffer = g_pBufferHead;
while(pBuffer != NULL)
{
if(pBuffer->ol.hEvent == hEvent)
break;
pBuffer = pBuffer->pNext;
}
return pBuffer;
}
void RebuildArray()
{
PBUFFER_OBJ pBuffer = g_pBufferHead;
int i = 1;
while(pBuffer != NULL)
{
g_events[i++] = pBuffer->ol.hEvent;
pBuffer = pBuffer->pNext;
}
}
BOOL PostAccept(PBUFFER_OBJ pBuffer)
{
PSOCKET_OBJ pSocket = pBuffer->pSocket;
if(pSocket->lpfnAcceptEx != NULL)
{
// 设置I/O类型,增加套节字上的重叠I/O计数
pBuffer->nOperation = OP_ACCEPT;
pSocket->nOutstandingOps ++;
// 投递此重叠I/O
DWORD dwBytes;
pBuffer->sAccept =
::WSASocket(AF_INET, SOCK_STREAM, 0, NULL, 0, WSA_FLAG_OVERLAPPED);
BOOL b = pSocket->lpfnAcceptEx(pSocket->s,
pBuffer->sAccept,
pBuffer->buff,
BUFFER_SIZE - ((sizeof(sockaddr_in) + 16) * 2),
sizeof(sockaddr_in) + 16,
sizeof(sockaddr_in) + 16,
&dwBytes,
&pBuffer->ol);
if(!b)
{
if(::WSAGetLastError() != WSA_IO_PENDING)
return FALSE;
}
return TRUE;
}
return FALSE;
};
BOOL PostRecv(PBUFFER_OBJ pBuffer)
{
// 设置I/O类型,增加套节字上的重叠I/O计数
pBuffer->nOperation = OP_READ;
pBuffer->pSocket->nOutstandingOps ++;
// 投递此重叠I/O
DWORD dwBytes;
DWORD dwFlags = 0;
WSABUF buf;
buf.buf = pBuffer->buff;
buf.len = pBuffer->nLen;
if(::WSARecv(pBuffer->pSocket->s, &buf, 1, &dwBytes, &dwFlags, &pBuffer->ol, NULL) != NO_ERROR)
{
if(::WSAGetLastError() != WSA_IO_PENDING)
return FALSE;
}
return TRUE;
}
BOOL PostSend(PBUFFER_OBJ pBuffer)
{
// 设置I/O类型,增加套节字上的重叠I/O计数
pBuffer->nOperation = OP_WRITE;
pBuffer->pSocket->nOutstandingOps ++;
// 投递此重叠I/O
DWORD dwBytes;
DWORD dwFlags = 0;
WSABUF buf;
buf.buf = pBuffer->buff;
buf.len = pBuffer->nLen;
if(::WSASend(pBuffer->pSocket->s,
&buf, 1, &dwBytes, dwFlags, &pBuffer->ol, NULL) != NO_ERROR)
{
if(::WSAGetLastError() != WSA_IO_PENDING)
return FALSE;
}
return TRUE;
}
BOOL HandleIO(PBUFFER_OBJ pBuffer)
{
PSOCKET_OBJ pSocket = pBuffer->pSocket; // 从BUFFER_OBJ对象中提取SOCKET_OBJ对象指针,为的是方便引用
pSocket->nOutstandingOps --;
// 获取重叠操作结果
DWORD dwTrans;
DWORD dwFlags;
BOOL bRet = ::WSAGetOverlappedResult(pSocket->s, &pBuffer->ol, &dwTrans, FALSE, &dwFlags);
if(!bRet)
{
// 在此套节字上有错误发生,因此,关闭套节字,移除此缓冲区对象。
// 如果没有其它抛出的I/O请求了,释放此缓冲区对象,否则,等待此套节字上的其它I/O也完成
if(pSocket->s != INVALID_SOCKET)
{
::closesocket(pSocket->s);
pSocket->s = INVALID_SOCKET;
}
if(pSocket->nOutstandingOps == 0)
FreeSocketObj(pSocket);
FreeBufferObj(pBuffer);
return FALSE;
}
// 没有错误发生,处理已完成的I/O
switch(pBuffer->nOperation)
{
case OP_ACCEPT: // 接收到一个新的连接,并接收到了对方发来的第一个封包
{
// 为新客户创建一个SOCKET_OBJ对象
PSOCKET_OBJ pClient = GetSocketObj(pBuffer->sAccept);
// 为发送数据创建一个BUFFER_OBJ对象,这个对象会在套节字出错或者关闭时释放
PBUFFER_OBJ pSend = GetBufferObj(pClient, BUFFER_SIZE);
if(pSend == NULL)
{
printf(" Too much connections! \n");
FreeSocketObj(pClient);
return FALSE;
}
RebuildArray();
// 将数据复制到发送缓冲区
pSend->nLen = dwTrans;
memcpy(pSend->buff, pBuffer->buff, dwTrans);
// 投递此发送I/O(将数据回显给客户)
if(!PostSend(pSend))
{
// 万一出错的话,释放上面刚申请的两个对象
FreeSocketObj(pSocket);
FreeBufferObj(pSend);
return FALSE;
}
// 继续投递接受I/O
PostAccept(pBuffer);
}
break;
case OP_READ: // 接收数据完成
{
if(dwTrans > 0)
{
// 创建一个缓冲区,以发送数据。这里就使用原来的缓冲区
PBUFFER_OBJ pSend = pBuffer;
pSend->nLen = dwTrans;
// 投递发送I/O(将数据回显给客户)
PostSend(pSend);
}
else // 套节字关闭
{
// 必须先关闭套节字,以便在此套节字上投递的其它I/O也返回
if(pSocket->s != INVALID_SOCKET)
{
::closesocket(pSocket->s);
pSocket->s = INVALID_SOCKET;
}
if(pSocket->nOutstandingOps == 0)
FreeSocketObj(pSocket);
FreeBufferObj(pBuffer);
return FALSE;
}
}
break;
case OP_WRITE: // 发送数据完成
{
if(dwTrans > 0)
{
// 继续使用这个缓冲区投递接收数据的请求
pBuffer->nLen = BUFFER_SIZE;
PostRecv(pBuffer);
}
else // 套节字关闭
{
// 同样,要先关闭套节字
if(pSocket->s != INVALID_SOCKET)
{
::closesocket(pSocket->s);
pSocket->s = INVALID_SOCKET;
}
if(pSocket->nOutstandingOps == 0)
FreeSocketObj(pSocket);
FreeBufferObj(pBuffer);
return FALSE;
}
}
break;
}
return TRUE;
}
void main()
{
// 创建监听套节字,绑定到本地端口,进入监听模式
int nPort = 4567;
SOCKET sListen =
::WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, 0, WSA_FLAG_OVERLAPPED);
SOCKADDR_IN si;
si.sin_family = AF_INET;
si.sin_port = ::ntohs(nPort);
si.sin_addr.S_un.S_addr = INADDR_ANY;
::bind(sListen, (sockaddr*)&si, sizeof(si));
::listen(sListen, 200);
// 为监听套节字创建一个SOCKET_OBJ对象
PSOCKET_OBJ pListen = GetSocketObj(sListen);
// 加载扩展函数AcceptEx
GUID GuidAcceptEx = WSAID_ACCEPTEX;
DWORD dwBytes;
WSAIoctl(pListen->s,
SIO_GET_EXTENSION_FUNCTION_POINTER,
&GuidAcceptEx,
sizeof(GuidAcceptEx),
&pListen->lpfnAcceptEx,
sizeof(pListen->lpfnAcceptEx),
&dwBytes,
NULL,
NULL);
// 创建用来重新建立g_events数组的事件对象
g_events[0] = ::WSACreateEvent();
// 在此可以投递多个接受I/O请求
for(int i=0; i<5; i++)
{
PostAccept(GetBufferObj(pListen, BUFFER_SIZE));
}
::WSASetEvent(g_events[0]);
while(TRUE)
{
int nIndex =
::WSAWaitForMultipleEvents(g_nBufferCount + 1, g_events, FALSE, WSA_INFINITE, FALSE);
if(nIndex == WSA_WAIT_FAILED)
{
printf("WSAWaitForMultipleEvents() failed \n");
break;
}
nIndex = nIndex - WSA_WAIT_EVENT_0;
for(int i=0; i<=nIndex; i++)
{
int nRet = ::WSAWaitForMultipleEvents(1, &g_events[i], TRUE, 0, FALSE);
if(nRet == WSA_WAIT_TIMEOUT)
continue;
else
{
::WSAResetEvent(g_events[i]);
// 重新建立g_events数组
if(i == 0)
{
RebuildArray();
continue;
}
// 处理这个I/O
PBUFFER_OBJ pBuffer = FindBufferObj(g_events[i]);
if(pBuffer != NULL)
{
if(!HandleIO(pBuffer))
RebuildArray();
}
}
}
}
}