Uber 是一家美国硅谷的科技公司,也是 Go 语言的早期 adopter。其开源了很多 golang 项目,诸如被 Gopher 圈熟知的 zap 、jaeger 等。2018 年年末 Uber 将内部的 Go 风格规范 开源到 GitHub,经过一年的积累和更新,该规范已经初具规模,并受到广大 Gopher 的关注。本文是该规范的中文版本。本版本会根据原版实时更新。
版本
当前更新版本:2020-06-05 版本地址:commit:#93
如果您发现任何更新、问题或改进,请随时 fork 和 PR
Please feel free to fork and PR if you find any updates, issues or improvement.
目录
介绍样式 (style) 是支配我们代码的惯例。术语样式
有点用词不当,因为这些约定涵盖的范围不限于由 gofmt 替我们处理的源文件格式。
本指南的目的是通过详细描述在 Uber 编写 Go 代码的注意事项来管理这种复杂性。这些规则的存在是为了使代码库易于管理,同时仍然允许工程师更有效地使用 Go 语言功能。
该指南最初由 Prashant Varanasi 和 Simon Newton 编写,目的是使一些同事能快速使用 Go。多年来,该指南已根据其他人的反馈进行了修改。
本文档记录了我们在 Uber 遵循的 Go 代码中的惯用约定。其中许多是 Go 的通用准则,而其他扩展准则依赖于下面外部的指南:
Effective Go
The Go common mistakes guide
所有代码都应该通过golint
和go vet
的检查并无错误。我们建议您将编辑器设置为:
保存时运行 goimports
运行 golint
和 go vet
检查错误
您可以在以下 Go 编辑器工具支持页面中找到更为详细的信息:https://github.com/golang/go/wiki/IDEsAndTextEditorPlugins
指导原则 指向 interface 的指针您几乎不需要指向接口类型的指针。您应该将接口作为值进行传递,在这样的传递过程中,实质上传递的底层数据仍然可以是指针。
接口实质上在底层用两个字段表示:
一个指向某些特定类型信息的指针。您可以将其视为”type”。
数据指针。如果存储的数据是指针,则直接存储。如果存储的数据是一个值,则存储指向该值的指针。
如果希望接口方法修改基础数据,则必须使用指针传递。
Interface 合理性验证在编译时验证接口的符合性。这包括:
将实现特定接口所需的导出类型作为其 API 的一部分
导出或未导出的类型是实现同一接口的类型集合的一部分
其他违反接口的情况会破坏用户。
Bad Good 1 2 3 4 5 6 7 8 9 type Handler struct { // ... } func (h *Handler) ServeHTTP ( w http.ResponseWriter, r *http.Request, ) { ... }
1 2 3 4 5 6 7 8 9 10 type Handler struct { // ... } var _ http.Handler = (*Handler)(nil )func (h *Handler) ServeHTTP ( w http.ResponseWriter, r *http.Request, ) { // ... }
如果 *Handler
永远不会与 http.Handler
接口匹配,那么语句 var _ http.Handler = (*Handler)(nil)
将无法编译
赋值的右边应该是断言类型的零值。对于指针类型(如 *Handler
)、切片和映射,这是 nil
;对于结构类型,这是空结构。
1 2 3 4 5 6 7 8 9 10 11 type LogHandler struct { h http.Handler log *zap.Logger } var _ http.Handler = LogHandler{}func (h LogHandler) ServeHTTP ( w http.ResponseWriter, r *http.Request, ) { // ... }
接收器 (receiver) 与接口使用值接收器的方法既可以通过值调用,也可以通过指针调用。
例如,
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 type S struct { data string } func (s S) Read () string { return s.data } func (s *S) Write (str string ) { s.data = str } sVals := map [int ]S{1 : {"A" }} // 你只能通过值调用 Read sVals[1 ].Read() // 这不能编译通过: // sVals[1].Write("test") sPtrs := map [int ]*S{1 : {"A" }} // 通过指针既可以调用 Read,也可以调用 Write 方法 sPtrs[1 ].Read() sPtrs[1 ].Write("test" )
同样,即使该方法具有值接收器,也可以通过指针来满足接口。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 type F interface { f() } type S1 struct {}func (s S1) f () {}type S2 struct {}func (s *S2) f () {}s1Val := S1{} s1Ptr := &S1{} s2Val := S2{} s2Ptr := &S2{} var i Fi = s1Val i = s1Ptr i = s2Ptr // 下面代码无法通过编译。因为 s2Val 是一个值,而 S2 的 f 方法中没有使用值接收器 // i = s2Val
Effective Go 中有一段关于 pointers vs. values 的精彩讲解。
零值 Mutex 是有效的零值 sync.Mutex
和 sync.RWMutex
是有效的。所以指向 mutex 的指针基本是不必要的。
Bad Good 1 2 mu := new (sync.Mutex) mu.Lock()
1 2 var mu sync.Mutexmu.Lock()
如果你使用结构体指针,mutex 可以非指针形式作为结构体的组成字段,或者更好的方式是直接嵌入到结构体中。 如果是私有结构体类型或是要实现 Mutex 接口的类型,我们可以使用嵌入 mutex 的方法:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 type smap struct { sync.Mutex // only for unexported types(仅适用于非导出类型) data map [string ]string } func newSMap () *smap { return &smap{ data: make (map [string ]string ), } } func (m *smap) Get (k string ) string { m.Lock() defer m.Unlock() return m.data[k] }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 type SMap struct { mu sync.Mutex // 对于导出类型,请使用私有锁 data map [string ]string } func NewSMap () *SMap { return &SMap{ data: make (map [string ]string ), } } func (m *SMap) Get (k string ) string { m.mu.Lock() defer m.mu.Unlock() return m.data[k] }
为私有类型或需要实现互斥接口的类型嵌入。 对于导出的类型,请使用专用字段。
在边界处拷贝 Slices 和 Mapsslices 和 maps 包含了指向底层数据的指针,因此在需要复制它们时要特别注意。
接收 Slices 和 Maps请记住,当 map 或 slice 作为函数参数传入时,如果您存储了对它们的引用,则用户可以对其进行修改。
Bad Good 1 2 3 4 5 6 7 8 9 func (d *Driver) SetTrips (trips []Trip) { d.trips = trips } trips := ... d1.SetTrips(trips) // 你是要修改 d1.trips 吗? trips[0 ] = ...
1 2 3 4 5 6 7 8 9 10 func (d *Driver) SetTrips (trips []Trip) { d.trips = make ([]Trip, len (trips)) copy (d.trips, trips) } trips := ... d1.SetTrips(trips) // 这里我们修改 trips[0],但不会影响到 d1.trips trips[0 ] = ...
返回 slices 或 maps同样,请注意用户对暴露内部状态的 map 或 slice 的修改。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 type Stats struct { mu sync.Mutex counters map [string ]int } // Snapshot 返回当前状态。 func (s *Stats) Snapshot () map [string ]int { s.mu.Lock() defer s.mu.Unlock() return s.counters } // snapshot 不再受互斥锁保护 // 因此对 snapshot 的任何访问都将受到数据竞争的影响 // 影响 stats.counters snapshot := stats.Snapshot()
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 type Stats struct { mu sync.Mutex counters map [string ]int } func (s *Stats) Snapshot () map [string ]int { s.mu.Lock() defer s.mu.Unlock() result := make (map [string ]int , len (s.counters)) for k, v := range s.counters { result[k] = v } return result } // snapshot 现在是一个拷贝 snapshot := stats.Snapshot()
使用 defer 释放资源使用 defer 释放资源,诸如文件和锁。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 p.Lock() if p.count < 10 { p.Unlock() return p.count } p.count++ newCount := p.count p.Unlock() return newCount// 当有多个 return 分支时,很容易遗忘 unlock
1 2 3 4 5 6 7 8 9 10 11 p.Lock() defer p.Unlock()if p.count < 10 { return p.count } p.count++ return p.count// 更可读
Defer 的开销非常小,只有在您可以证明函数执行时间处于纳秒级的程度时,才应避免这样做。使用 defer 提升可读性是值得的,因为使用它们的成本微不足道。尤其适用于那些不仅仅是简单内存访问的较大的方法,在这些方法中其他计算的资源消耗远超过 defer
。
Channel 的 size 要么是 1,要么是无缓冲的channel 通常 size 应为 1 或是无缓冲的。默认情况下,channel 是无缓冲的,其 size 为零。任何其他尺寸都必须经过严格的审查。我们需要考虑如何确定大小,考虑是什么阻止了 channel 在高负载下和阻塞写时的写入,以及当这种情况发生时系统逻辑有哪些变化。(翻译解释:按照原文意思是需要界定通道边界,竞态条件,以及逻辑上下文梳理)
Bad Good 1 2 // 应该足以满足任何情况! c := make (chan int , 64 )
1 2 3 4 // 大小:1 c := make (chan int , 1 ) // 或者 // 无缓冲 channel,大小为 0 c := make (chan int )
枚举从 1 开始在 Go 中引入枚举的标准方法是声明一个自定义类型和一个使用了 iota 的 const 组。由于变量的默认值为 0,因此通常应以非零值开头枚举。
Bad Good 1 2 3 4 5 6 7 8 9 type Operation int const ( Add Operation = iota Subtract Multiply ) // Add=0, Subtract=1, Multiply=2
1 2 3 4 5 6 7 8 9 type Operation int const ( Add Operation = iota + 1 Subtract Multiply ) // Add=1, Subtract=2, Multiply=3
在某些情况下,使用零值是有意义的(枚举从零开始),例如,当零值是理想的默认行为时。
1 2 3 4 5 6 7 8 9 type LogOutput int const ( LogToStdout LogOutput = iota LogToFile LogToRemote ) // LogToStdout=0, LogToFile=1, LogToRemote=2
使用 time 处理时间时间处理很复杂。关于时间的错误假设通常包括以下几点。
一天有 24 小时
一小时有 60 分钟
一周有七天
一年 365 天
还有更多
例如,1 表示在一个时间点上加上 24 小时并不总是产生一个新的日历日。
因此,在处理时间时始终使用 "time"
包,因为它有助于以更安全、更准确的方式处理这些不正确的假设。
使用 time.Time
表达瞬时时间在处理时间的瞬间时使用 time.time
,在比较、添加或减去时间时使用 time.Time
中的方法。
Bad Good 1 2 3 func isActive (now, start, stop int ) bool { return start <= now && now < stop }
1 2 3 func isActive (now, start, stop time.Time) bool { return (start.Before(now) || start.Equal(now)) && now.Before(stop) }
使用 time.Duration
表达时间段在处理时间段时使用 time.Duration
.
Bad Good 1 2 3 4 5 6 7 func poll (delay int ) { for { // ... time.Sleep(time.Duration(delay) * time.Millisecond) } } poll(10 ) // 是几秒钟还是几毫秒?
1 2 3 4 5 6 7 func poll (delay time.Duration) { for { // ... time.Sleep(delay) } } poll(10 *time.Second)
回到第一个例子,在一个时间瞬间加上 24 小时,我们用于添加时间的方法取决于意图。如果我们想要下一个日历日(当前天的下一天)的同一个时间点,我们应该使用 Time.AddDate
。但是,如果我们想保证某一时刻比前一时刻晚 24 小时,我们应该使用 Time.Add
。
1 2 newDay := t.AddDate(0 /* years */ , 0 , /* months */ , 1 /* days */ ) maybeNewDay := t.Add(24 * time.Hour)
对外部系统使用 time.Time
和 time.Duration
尽可能在与外部系统的交互中使用 time.Duration
和 time.Time
例如 :
当不能在这些交互中使用 time.Duration
时,请使用 int
或 float64
,并在字段名称中包含单位。
例如,由于 encoding/json
不支持 time.Duration
,因此该单位包含在字段的名称中。
Bad Good 1 2 3 4 // {"interval": 2} type Config struct { Interval int `json:"interval"` }
1 2 3 4 // {"intervalMillis": 2000} type Config struct { IntervalMillis int `json:"intervalMillis"` }
当在这些交互中不能使用 time.Time
时,除非达成一致,否则使用 string
和 RFC 3339 中定义的格式时间戳。默认情况下,Time.UnmarshalText
使用此格式,并可通过 time.RFC3339
在 Time.Format
和 time.Parse
中使用。
尽管这在实践中并不成问题,但请记住,"time"
包不支持解析闰秒时间戳(8728 ),也不在计算中考虑闰秒(15190 )。如果您比较两个时间瞬间,则差异将不包括这两个瞬间之间可能发生的闰秒。
错误类型Go 中有多种声明错误(Error) 的选项:
返回错误时,请考虑以下因素以确定最佳选择:
如果客户端需要检测错误,并且您已使用创建了一个简单的错误 errors.New
,请使用一个错误变量。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 // package foo func Open () error { return errors.New("could not open" ) } // package bar func use () { if err := foo.Open(); err != nil { if err.Error() == "could not open" { // handle } else { panic ("unknown error" ) } } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 // package foo var ErrCouldNotOpen = errors.New("could not open" )func Open () error { return ErrCouldNotOpen } // package bar if err := foo.Open(); err != nil { if err == foo.ErrCouldNotOpen { // handle } else { panic ("unknown error" ) } }
如果您有可能需要客户端检测的错误,并且想向其中添加更多信息(例如,它不是静态字符串),则应使用自定义类型。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 func open (file string ) error { return fmt.Errorf("file %q not found" , file) } func use () { if err := open("testfile.txt" ); err != nil { if strings.Contains(err.Error(), "not found" ) { // handle } else { panic ("unknown error" ) } } }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 type errNotFound struct { file string } func (e errNotFound) Error () string { return fmt.Sprintf("file %q not found" , e.file) } func open (file string ) error { return errNotFound{file: file} } func use () { if err := open("testfile.txt" ); err != nil { if _, ok := err.(errNotFound); ok { // handle } else { panic ("unknown error" ) } } }
直接导出自定义错误类型时要小心,因为它们已成为程序包公共 API 的一部分。最好公开匹配器功能以检查错误。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 // package foo type errNotFound struct { file string } func (e errNotFound) Error () string { return fmt.Sprintf("file %q not found" , e.file) } func IsNotFoundError (err error) bool { _, ok := err.(errNotFound) return ok } func Open (file string ) error { return errNotFound{file: file} } // package bar if err := foo.Open("foo" ); err != nil { if foo.IsNotFoundError(err) { // handle } else { panic ("unknown error" ) } }
错误包装 (Error Wrapping)一个(函数/方法)调用失败时,有三种主要的错误传播方式:
建议在可能的地方添加上下文,以使您获得诸如“调用服务 foo:连接被拒绝”之类的更有用的错误,而不是诸如“连接被拒绝”之类的模糊错误。
在将上下文添加到返回的错误时,请避免使用“failed to”之类的短语以保持上下文简洁,这些短语会陈述明显的内容,并随着错误在堆栈中的渗透而逐渐堆积:
Bad Good 1 2 3 4 5 s, err := store.New() if err != nil { return fmt.Errorf( "failed to create new store: %s" , err) }
1 2 3 4 5 s, err := store.New() if err != nil { return fmt.Errorf( "new store: %s" , err) }
1 failed to x: failed to y: failed to create new store: the error
1 x: y: new store: the error
但是,一旦将错误发送到另一个系统,就应该明确消息是错误消息(例如使用err
标记,或在日志中以”Failed”为前缀)。
另请参见 Don’t just check errors, handle them gracefully . 不要只是检查错误,要优雅地处理错误
处理类型断言失败type assertion 的单个返回值形式针对不正确的类型将产生 panic。因此,请始终使用“comma ok”的惯用法。
Bad Good 1 2 3 4 t, ok := i.(string ) if !ok { // 优雅地处理错误 }
不要 panic在生产环境中运行的代码必须避免出现 panic。panic 是 cascading failures 级联失败的主要根源 。如果发生错误,该函数必须返回错误,并允许调用方决定如何处理它。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 14 func foo (bar string ) { if len (bar) == 0 { panic ("bar must not be empty" ) } // ... } func main () { if len (os.Args) != 2 { fmt.Println("USAGE: foo <bar>" ) os.Exit(1 ) } foo(os.Args[1 ]) }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 func foo (bar string ) error { if len (bar) == 0 { return errors.New("bar must not be empty" ) } // ... return nil } func main () { if len (os.Args) != 2 { fmt.Println("USAGE: foo <bar>" ) os.Exit(1 ) } if err := foo(os.Args[1 ]); err != nil { panic (err) } }
panic/recover 不是错误处理策略。仅当发生不可恢复的事情(例如:nil 引用)时,程序才必须 panic。程序初始化是一个例外:程序启动时应使程序中止的不良情况可能会引起 panic。
1 var _statusTemplate = template.Must(template.New("name" ).Parse("_statusHTML" ))
即使在测试代码中,也优先使用t.Fatal
或者t.FailNow
而不是 panic 来确保失败被标记。
Bad Good 1 2 3 4 5 6 // func TestFoo(t *testing.T) f, err := ioutil.TempFile("" , "test" ) if err != nil { panic ("failed to set up test" ) }
1 2 3 4 5 6 // func TestFoo(t *testing.T) f, err := ioutil.TempFile("" , "test" ) if err != nil { t.Fatal("failed to set up test" ) }
使用 go.uber.org/atomic使用 sync/atomic 包的原子操作对原始类型 (int32
, int64
等)进行操作,因为很容易忘记使用原子操作来读取或修改变量。
go.uber.org/atomic 通过隐藏基础类型为这些操作增加了类型安全性。此外,它包括一个方便的atomic.Bool
类型。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 type foo struct { running int32 // atomic } func (f* foo) start () { if atomic.SwapInt32(&f.running, 1 ) == 1 { // already running… return } // start the Foo } func (f *foo) isRunning () bool { return f.running == 1 // race! }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 type foo struct { running atomic.Bool } func (f *foo) start () { if f.running.Swap(true ) { // already running… return } // start the Foo } func (f *foo) isRunning () bool { return f.running.Load() }
避免可变全局变量使用选择依赖注入方式避免改变全局变量。 既适用于函数指针又适用于其他值类型
Bad Good 1 2 3 4 5 6 // sign.go var _timeNow = time.Nowfunc sign (msg string ) string { now := _timeNow() return signWithTime(msg, now) }
1 2 3 4 5 6 7 8 9 10 11 12 13 // sign.go type signer struct { now func () time .Time } func newSigner () *signer { return &signer{ now: time.Now, } } func (s *signer) Sign (msg string ) string { now := s.now() return signWithTime(msg, now) }
1 2 3 4 5 6 7 8 9 // sign_test.go func TestSign (t *testing.T) { oldTimeNow := _timeNow _timeNow = func () time .Time { return someFixedTime } defer func () { _timeNow = oldTimeNow }() assert.Equal(t, want, sign(give)) }
1 2 3 4 5 6 7 8 // sign_test.go func TestSigner (t *testing.T) { s := newSigner() s.now = func () time .Time { return someFixedTime } assert.Equal(t, want, s.Sign(give)) }
避免在公共结构中嵌入类型这些嵌入的类型泄漏实现细节、禁止类型演化和模糊的文档。
假设您使用共享的 AbstractList
实现了多种列表类型,请避免在具体的列表实现中嵌入 AbstractList
。 相反,只需手动将方法写入具体的列表,该列表将委托给抽象列表。
1 2 3 4 5 6 7 8 9 type AbstractList struct {}// 添加将实体添加到列表中。 func (l *AbstractList) Add (e Entity) { // ... } // 移除从列表中移除实体。 func (l *AbstractList) Remove (e Entity) { // ... }
Bad Good 1 2 3 4 // ConcreteList 是一个实体列表。 type ConcreteList struct { *AbstractList }
1 2 3 4 5 6 7 8 9 10 11 12 // ConcreteList 是一个实体列表。 type ConcreteList struct { list *AbstractList } // 添加将实体添加到列表中。 func (l *ConcreteList) Add (e Entity) { return l.list.Add(e) } // 移除从列表中移除实体。 func (l *ConcreteList) Remove (e Entity) { return l.list.Remove(e) }
Go 允许 类型嵌入 作为继承和组合之间的折衷。 外部类型获取嵌入类型的方法的隐式副本。 默认情况下,这些方法委托给嵌入实例的同一方法。
结构还获得与类型同名的字段。 所以,如果嵌入的类型是 public,那么字段是 public。为了保持向后兼容性,外部类型的每个未来版本都必须保留嵌入类型。
很少需要嵌入类型。 这是一种方便,可以帮助您避免编写冗长的委托方法。
即使嵌入兼容的抽象列表 interface ,而不是结构体,这将为开发人员提供更大的灵活性来改变未来,但仍然泄露了具体列表使用抽象实现的细节。
Bad Good 1 2 3 4 5 6 7 8 9 // AbstractList 是各种实体列表的通用实现。 type AbstractList interface { Add(Entity) Remove(Entity) } // ConcreteList 是一个实体列表。 type ConcreteList struct { AbstractList }
1 2 3 4 5 6 7 8 9 10 11 12 // ConcreteList 是一个实体列表。 type ConcreteList struct { list *AbstractList } // 添加将实体添加到列表中。 func (l *ConcreteList) Add (e Entity) { return l.list.Add(e) } // 移除从列表中移除实体。 func (l *ConcreteList) Remove (e Entity) { return l.list.Remove(e) }
无论是使用嵌入式结构还是使用嵌入式接口,嵌入式类型都会限制类型的演化.
向嵌入式接口添加方法是一个破坏性的改变。
删除嵌入类型是一个破坏性的改变。
即使使用满足相同接口的替代方法替换嵌入类型,也是一个破坏性的改变。
尽管编写这些委托方法是乏味的,但是额外的工作隐藏了实现细节,留下了更多的更改机会,还消除了在文档中发现完整列表接口的间接性操作。
避免使用内置名称Go语言规范language specification 概述了几个内置的, 不应在Go项目中使用的名称标识predeclared identifiers 。
根据上下文的不同,将这些标识符作为名称重复使用, 将在当前作用域(或任何嵌套作用域)中隐藏原始标识符,或者混淆代码。 在最好的情况下,编译器会报错;在最坏的情况下,这样的代码可能会引入潜在的、难以恢复的错误。
Bad Good 1 2 3 4 5 6 7 8 var error string // `error` 作用域隐式覆盖 // or func handleErrorMessage (error string ) { // `error` 作用域隐式覆盖 }
1 2 3 4 5 6 7 8 var errorMessage string // `error` 指向内置的非覆盖 // or func handleErrorMessage (msg string ) { // `error` 指向内置的非覆盖 }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 type Foo struct { // 虽然这些字段在技术上不构成阴影,但`error`或`string`字符串的重映射现在是不明确的。 error error string string } func (f Foo) Error () error { // `error` 和 `f.error` 在视觉上是相似的 return f.error } func (f Foo) String () string { // `string` and `f.string` 在视觉上是相似的 return f.string }
1 2 3 4 5 6 7 8 9 10 11 12 13 type Foo struct { // `error` and `string` 现在是明确的。 err error str string } func (f Foo) Error () error { return f.err } func (f Foo) String () string { return f.str }
注意,编译器在使用预先分隔的标识符时不会生成错误, 但是诸如go vet
之类的工具会正确地指出这些和其他情况下的隐式问题。
性能性能方面的特定准则只适用于高频场景。
优先使用 strconv 而不是 fmt将原语转换为字符串或从字符串转换时,strconv
速度比fmt
快。
Bad Good 1 2 3 for i := 0 ; i < b.N; i++ { s := fmt.Sprint(rand.Int()) }
1 2 3 for i := 0 ; i < b.N; i++ { s := strconv.Itoa(rand.Int()) }
1 BenchmarkFmtSprint-4 143 ns/op 2 allocs/op
1 BenchmarkStrconv-4 64.2 ns/op 1 allocs/op
避免字符串到字节的转换不要反复从固定字符串创建字节 slice。相反,请执行一次转换并捕获结果。
Bad Good 1 2 3 for i := 0 ; i < b.N; i++ { w.Write([]byte ("Hello world" )) }
1 2 3 4 data := []byte ("Hello world" ) for i := 0 ; i < b.N; i++ { w.Write(data) }
1 BenchmarkBad-4 50000000 22.2 ns/op
1 BenchmarkGood-4 500000000 3.25 ns/op
尽量初始化时指定 Map 容量在尽可能的情况下,在使用 make()
初始化的时候提供容量信息
为 make()
提供容量信息(hint)尝试在初始化时调整 map 大小, 这减少了在将元素添加到 map 时增长和分配的开销。 注意,map 不能保证分配 hint 个容量。因此,即使提供了容量,添加元素仍然可以进行分配。
Bad Good 1 2 3 4 5 6 m := make (map [string ]os.FileInfo) files, _ := ioutil.ReadDir("./files" ) for _, f := range files { m[f.Name()] = f }
1 2 3 4 5 6 7 files, _ := ioutil.ReadDir("./files" ) m := make (map [string ]os.FileInfo, len (files)) for _, f := range files { m[f.Name()] = f }
m
是在没有大小提示的情况下创建的; 在运行时可能会有更多分配。
m
是有大小提示创建的;在运行时可能会有更少的分配。
规范 一致性本文中概述的一些标准都是客观性的评估,是根据场景、上下文、或者主观性的判断;
但是最重要的是,保持一致 .
一致性的代码更容易维护、是更合理的、需要更少的学习成本、并且随着新的约定出现或者出现错误后更容易迁移、更新、修复 bug
相反,一个单一的代码库会导致维护成本开销、不确定性和认知偏差。所有这些都会直接导致速度降低、 代码审查痛苦、而且增加 bug 数量
将这些标准应用于代码库时,建议在 package(或更大)级别进行更改,子包级别的应用程序通过将多个样式引入到同一代码中,违反了上述关注点。
相似的声明放在一组Go 语言支持将相似的声明放在一个组内。
这同样适用于常量、变量和类型声明:
Bad Good 1 2 3 4 5 6 7 8 9 const a = 1 const b = 2 var a = 1 var b = 2 type Area float64 type Volume float64
1 2 3 4 5 6 7 8 9 10 11 12 13 14 const ( a = 1 b = 2 ) var ( a = 1 b = 2 ) type ( Area float64 Volume float64 )
仅将相关的声明放在一组。不要将不相关的声明放在一组。
Bad Good 1 2 3 4 5 6 7 8 type Operation int const ( Add Operation = iota + 1 Subtract Multiply ENV_VAR = "MY_ENV" )
1 2 3 4 5 6 7 8 9 type Operation int const ( Add Operation = iota + 1 Subtract Multiply ) const ENV_VAR = "MY_ENV"
分组使用的位置没有限制,例如:你可以在函数内部使用它们:
Bad Good 1 2 3 4 5 6 7 func f () string { var red = color.New(0xff 0000) var green = color.New(0x00ff 00) var blue = color.New(0x0000ff ) ... }
1 2 3 4 5 6 7 8 9 func f () string { var ( red = color.New(0xff 0000) green = color.New(0x00ff 00) blue = color.New(0x0000ff ) ) ... }
import 分组导入应该分为两组:
默认情况下,这是 goimports 应用的分组。
Bad Good 1 2 3 4 5 6 import ( "fmt" "os" "go.uber.org/atomic" "golang.org/x/sync/errgroup" )
1 2 3 4 5 6 7 import ( "fmt" "os" "go.uber.org/atomic" "golang.org/x/sync/errgroup" )
包名当命名包时,请按下面规则选择一个名称:
全部小写。没有大写或下划线。
大多数使用命名导入的情况下,不需要重命名。
简短而简洁。请记住,在每个使用的地方都完整标识了该名称。
不用复数。例如net/url
,而不是net/urls
。
不要用“common”,“util”,“shared”或“lib”。这些是不好的,信息量不足的名称。
另请参阅 Package Names 和 Go 包样式指南 .
函数名我们遵循 Go 社区关于使用 MixedCaps 作为函数名 的约定。有一个例外,为了对相关的测试用例进行分组,函数名可能包含下划线,如:TestMyFunction_WhatIsBeingTested
.
导入别名如果程序包名称与导入路径的最后一个元素不匹配,则必须使用导入别名。
1 2 3 4 5 6 import ( "net/http" client "example.com/client-go" trace "example.com/trace/v2" )
在所有其他情况下,除非导入之间有直接冲突,否则应避免导入别名。
Bad Good 1 2 3 4 5 6 import ( "fmt" "os" nettrace "golang.net/x/trace" )
1 2 3 4 5 6 7 import ( "fmt" "os" "runtime/trace" nettrace "golang.net/x/trace" )
函数分组与顺序
函数应按粗略的调用顺序排序。
同一文件中的函数应按接收者分组。
因此,导出的函数应先出现在文件中,放在struct
, const
, var
定义的后面。
在定义类型之后,但在接收者的其余方法之前,可能会出现一个 newXYZ()
/NewXYZ()
由于函数是按接收者分组的,因此普通工具函数应在文件末尾出现。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 func (s *something) Cost () { return calcCost(s.weights) } type something struct { ... }func calcCost (n []int ) int {...}func (s *something) Stop () {...}func newSomething () *something { return &something{} }
1 2 3 4 5 6 7 8 9 10 11 12 13 type something struct { ... }func newSomething () *something { return &something{} } func (s *something) Cost () { return calcCost(s.weights) } func (s *something) Stop () {...}func calcCost (n []int ) int {...}
减少嵌套代码应通过尽可能先处理错误情况/特殊情况并尽早返回或继续循环来减少嵌套。减少嵌套多个级别的代码的代码量。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 for _, v := range data { if v.F1 == 1 { v = process(v) if err := v.Call(); err == nil { v.Send() } else { return err } } else { log.Printf("Invalid v: %v" , v) } }
1 2 3 4 5 6 7 8 9 10 11 12 for _, v := range data { if v.F1 != 1 { log.Printf("Invalid v: %v" , v) continue } v = process(v) if err := v.Call(); err != nil { return err } v.Send() }
不必要的 else如果在 if 的两个分支中都设置了变量,则可以将其替换为单个 if。
Bad Good 1 2 3 4 5 6 var a int if b { a = 100 } else { a = 10 }
1 2 3 4 a := 10 if b { a = 100 }
顶层变量声明在顶层,使用标准var
关键字。请勿指定类型,除非它与表达式的类型不同。
Bad Good 1 2 3 var _s string = F()func F () string { return "A" }
1 2 3 4 5 var _s = F()// 由于 F 已经明确了返回一个字符串类型,因此我们没有必要显式指定_s 的类型 // 还是那种类型 func F () string { return "A" }
如果表达式的类型与所需的类型不完全匹配,请指定类型。
1 2 3 4 5 6 7 8 type myError struct {}func (myError) Error () string { return "error" }func F () myError { return myError{} }var _e error = F()// F 返回一个 myError 类型的实例,但是我们要 error 类型
对于未导出的顶层常量和变量,使用_作为前缀在未导出的顶级vars
和consts
, 前面加上前缀_,以使它们在使用时明确表示它们是全局符号。
例外:未导出的错误值,应以err
开头。
基本依据:顶级变量和常量具有包范围作用域。使用通用名称可能很容易在其他文件中意外使用错误的值。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 // foo.go const ( defaultPort = 8080 defaultUser = "user" ) // bar.go func Bar () { defaultPort := 9090 ... fmt.Println("Default port" , defaultPort) // We will not see a compile error if the first line of // Bar() is deleted. }
1 2 3 4 5 6 // foo.go const ( _defaultPort = 8080 _defaultUser = "user" )
结构体中的嵌入嵌入式类型(例如 mutex)应位于结构体内的字段列表的顶部,并且必须有一个空行将嵌入式字段与常规字段分隔开。
Bad Good 1 2 3 4 type Client struct { version int http.Client }
1 2 3 4 5 type Client struct { http.Client version int }
使用字段名初始化结构体初始化结构体时,几乎始终应该指定字段名称。现在由 go vet
强制执行。
Bad Good 1 k := User{"John" , "Doe" , true }
1 2 3 4 5 k := User{ FirstName: "John" , LastName: "Doe" , Admin: true , }
例外:如果有 3 个或更少的字段,则可以在测试表中省略字段名称。
1 2 3 4 5 6 7 tests := []struct { op Operation want string }{ {Add, "add" }, {Subtract, "subtract" }, }
本地变量声明如果将变量明确设置为某个值,则应使用短变量声明形式 (:=
)。
但是,在某些情况下,var
使用关键字时默认值会更清晰。例如,声明空切片。
Bad Good 1 2 3 4 5 6 7 8 func f (list []int ) { filtered := []int {} for _, v := range list { if v > 10 { filtered = append (filtered, v) } } }
1 2 3 4 5 6 7 8 func f (list []int ) { var filtered []int for _, v := range list { if v > 10 { filtered = append (filtered, v) } } }
nil 是一个有效的 slicenil
是一个有效的长度为 0 的 slice,这意味着,
您不应明确返回长度为零的切片。应该返回nil
来代替。
Bad Good 1 2 3 if x == "" { return []int {} }
1 2 3 if x == "" { return nil }
要检查切片是否为空,请始终使用len(s) == 0
。而非 nil
。
Bad Good 1 2 3 func isEmpty (s []string ) bool { return s == nil }
1 2 3 func isEmpty (s []string ) bool { return len (s) == 0 }
零值切片(用var
声明的切片)可立即使用,无需调用make()
创建。
Bad Good 1 2 3 4 5 6 7 8 9 10 nums := []int {} // or, nums := make([]int) if add1 { nums = append (nums, 1 ) } if add2 { nums = append (nums, 2 ) }
1 2 3 4 5 6 7 8 9 var nums []int if add1 { nums = append (nums, 1 ) } if add2 { nums = append (nums, 2 ) }
记住,虽然nil切片是有效的切片,但它不等于长度为0的切片(一个为nil,另一个不是),并且在不同的情况下(例如序列化),这两个切片的处理方式可能不同。
缩小变量作用域如果有可能,尽量缩小变量作用范围。除非它与 减少嵌套 的规则冲突。
Bad Good 1 2 3 4 err := ioutil.WriteFile(name, data, 0644 ) if err != nil { return err }
1 2 3 if err := ioutil.WriteFile(name, data, 0644 ); err != nil { return err }
如果需要在 if 之外使用函数调用的结果,则不应尝试缩小范围。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 if data, err := ioutil.ReadFile(name); err == nil { err = cfg.Decode(data) if err != nil { return err } fmt.Println(cfg) return nil } else { return err }
1 2 3 4 5 6 7 8 9 10 11 data, err := ioutil.ReadFile(name) if err != nil { return err } if err := cfg.Decode(data); err != nil { return err } fmt.Println(cfg) return nil
避免参数语义不明确(Avoid Naked Parameters)函数调用中的意义不明确的参数
可能会损害可读性。当参数名称的含义不明显时,请为参数添加 C 样式注释 (/* ... */
)
Bad Good 1 2 3 // func printInfo(name string, isLocal, done bool) printInfo("foo" , true , true )
1 2 3 // func printInfo(name string, isLocal, done bool) printInfo("foo" , true /* isLocal */ , true /* done */ )
对于上面的示例代码,还有一种更好的处理方式是将上面的 bool
类型换成自定义类型。将来,该参数可以支持不仅仅局限于两个状态(true/false)。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 type Region int const ( UnknownRegion Region = iota Local ) type Status int const ( StatusReady Status= iota + 1 StatusDone // Maybe we will have a StatusInProgress in the future. ) func printInfo (name string , region Region, status Status)
使用原始字符串字面值,避免转义Go 支持使用 原始字符串字面值 ,也就是 “ ` “ 来表示原生字符串,在需要转义的场景下,我们应该尽量使用这种方案来替换。
可以跨越多行并包含引号。使用这些字符串可以避免更难阅读的手工转义的字符串。
Bad Good 1 wantError := "unknown name:\"test\""
1 wantError := `unknown error:"test"`
初始化 Struct 引用在初始化结构引用时,请使用&T{}
代替new(T)
,以使其与结构体初始化一致。
Bad Good 1 2 3 4 5 sval := T{Name: "foo" } // inconsistent sptr := new (T) sptr.Name = "bar"
1 2 3 sval := T{Name: "foo" } sptr := &T{Name: "bar" }
初始化 Maps对于空 map 请使用 make(..)
初始化, 并且 map 是通过编程方式填充的。 这使得 map 初始化在表现上不同于声明,并且它还可以方便地在 make 后添加大小提示。
Bad Good 1 2 3 4 5 6 var ( // m1 读写安全; // m2 在写入时会 panic m1 = map [T1]T2{} m2 map [T1]T2 )
1 2 3 4 5 6 var ( // m1 读写安全; // m2 在写入时会 panic m1 = make (map [T1]T2) m2 map [T1]T2 )
声明和初始化看起来非常相似的。
声明和初始化看起来差别非常大。
在尽可能的情况下,请在初始化时提供 map 容量大小,详细请看 尽量初始化时指定 Map 容量 。
另外,如果 map 包含固定的元素列表,则使用 map literals(map 初始化列表) 初始化映射。
Bad Good 1 2 3 4 m := make (map [T1]T2, 3 ) m[k1] = v1 m[k2] = v2 m[k3] = v3
1 2 3 4 5 m := map [T1]T2{ k1: v1, k2: v2, k3: v3, }
基本准则是:在初始化时使用 map 初始化列表 来添加一组固定的元素。否则使用 make
(如果可以,请尽量指定 map 容量)。
如果你在函数外声明Printf
-style 函数的格式字符串,请将其设置为const
常量。
这有助于go vet
对格式字符串执行静态分析。
Bad Good 1 2 msg := "unexpected values %v, %v\n" fmt.Printf(msg, 1 , 2 )
1 2 const msg = "unexpected values %v, %v\n" fmt.Printf(msg, 1 , 2 )
命名 Printf 样式的函数声明Printf
-style 函数时,请确保go vet
可以检测到它并检查格式字符串。
这意味着您应尽可能使用预定义的Printf
-style 函数名称。go vet
将默认检查这些。有关更多信息,请参见 Printf 系列 。
如果不能使用预定义的名称,请以 f 结束选择的名称:Wrapf
,而不是Wrap
。go vet
可以要求检查特定的 Printf 样式名称,但名称必须以f
结尾。
1 $ go vet -printfuncs=wrapf,statusf
另请参阅 go vet: Printf family check .
编程模式 表驱动测试当测试逻辑是重复的时候,通过 subtests 使用 table 驱动的方式编写 case 代码看上去会更简洁。
Bad Good 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 // func TestSplitHostPort(t *testing.T) host, port, err := net.SplitHostPort("192.0.2.0:8000" ) require.NoError(t, err) assert.Equal(t, "192.0.2.0" , host) assert.Equal(t, "8000" , port) host, port, err = net.SplitHostPort("192.0.2.0:http" ) require.NoError(t, err) assert.Equal(t, "192.0.2.0" , host) assert.Equal(t, "http" , port) host, port, err = net.SplitHostPort(":8000" ) require.NoError(t, err) assert.Equal(t, "" , host) assert.Equal(t, "8000" , port) host, port, err = net.SplitHostPort("1:8" ) require.NoError(t, err) assert.Equal(t, "1" , host) assert.Equal(t, "8" , port)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 // func TestSplitHostPort(t *testing.T) tests := []struct { give string wantHost string wantPort string }{ { give: "192.0.2.0:8000" , wantHost: "192.0.2.0" , wantPort: "8000" , }, { give: "192.0.2.0:http" , wantHost: "192.0.2.0" , wantPort: "http" , }, { give: ":8000" , wantHost: "" , wantPort: "8000" , }, { give: "1:8" , wantHost: "1" , wantPort: "8" , }, } for _, tt := range tests { t.Run(tt.give, func (t *testing.T) { host, port, err := net.SplitHostPort(tt.give) require.NoError(t, err) assert.Equal(t, tt.wantHost, host) assert.Equal(t, tt.wantPort, port) }) }
很明显,使用 test table 的方式在代码逻辑扩展的时候,比如新增 test case,都会显得更加的清晰。
我们遵循这样的约定:将结构体切片称为tests
。 每个测试用例称为tt
。此外,我们鼓励使用give
和want
前缀说明每个测试用例的输入和输出值。
1 2 3 4 5 6 7 8 9 10 11 tests := []struct { give string wantHost string wantPort string }{ // ... } for _, tt := range tests { // ... }
功能选项功能选项是一种模式,您可以在其中声明一个不透明 Option 类型,该类型在某些内部结构中记录信息。您接受这些选项的可变编号,并根据内部结构上的选项记录的全部信息采取行动。
将此模式用于您需要扩展的构造函数和其他公共 API 中的可选参数,尤其是在这些功能上已经具有三个或更多参数的情况下。
Bad Good 1 2 3 4 5 6 7 8 9 // package db func Open ( addr string , cache bool , logger *zap.Logger ) (*Connection, error) { // ... }
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 // package db type Option interface { // ... } func WithCache (c bool ) Option { // ... } func WithLogger (log *zap.Logger) Option { // ... } // Open creates a connection. func Open ( addr string , opts ...Option, ) (*Connection, error) { // ... }
必须始终提供缓存和记录器参数,即使用户希望使用默认值。
1 2 3 4 db.Open(addr, db.DefaultCache, zap.NewNop()) db.Open(addr, db.DefaultCache, log) db.Open(addr, false /* cache */ , zap.NewNop()) db.Open(addr, false /* cache */ , log)
只有在需要时才提供选项。
1 2 3 4 5 6 7 8 db.Open(addr) db.Open(addr, db.WithLogger(log)) db.Open(addr, db.WithCache(false )) db.Open( addr, db.WithCache(false ), db.WithLogger(log), )
Our suggested way of implementing this pattern is with an Option
interface that holds an unexported method, recording options on an unexported options
struct.
我们建议实现此模式的方法是使用一个 Option
接口,该接口保存一个未导出的方法,在一个未导出的 options
结构上记录选项。
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 type options struct { cache bool logger *zap.Logger } type Option interface { apply(*options) } type cacheOption bool func (c cacheOption) apply (opts *options) { opts.cache = bool (c) } func WithCache (c bool ) Option { return cacheOption(c) } type loggerOption struct { Log *zap.Logger } func (l loggerOption) apply (opts *options) { opts.logger = l.Log } func WithLogger (log *zap.Logger) Option { return loggerOption{Log: log} } // Open creates a connection. func Open ( addr string , opts ...Option, ) (*Connection, error) { options := options{ cache: defaultCache, logger: zap.NewNop(), } for _, o := range opts { o.apply(&options) } // ... }
注意: 还有一种使用闭包实现这个模式的方法,但是我们相信上面的模式为作者提供了更多的灵活性,并且更容易对用户进行调试和测试。特别是,在不可能进行比较的情况下它允许在测试和模拟中对选项进行比较。此外,它还允许选项实现其他接口,包括 fmt.Stringer
,允许用户读取选项的字符串表示形式。
还可以参考下面资料:
Stargazers over time