Google DeepMind 的研究人员在《自然》期刊上发表论文,报告他们首次用大模型(LLM)发现了一个尚未解决的数学问题的解。Google DeepMind 的新工具被称为“FunSearch”,研究人员将一组产生创造性解决方案的 LLM 和一个作为检查者以避免错误建议的评估程序结合起来。接着将一个多次迭代此过程的演化方法,作为输入来引导 LLM。结果表明,这种方法可以得到新的、可验证的正确结果。他们将“FunSearch”应用到了著名的上限集问题(数学中涉及计数和排列领域的一个中心问题),发现了超越最著名上限集的大上限集新构造。研究人员表示,“FunSearch”的成功关键是它会寻找那些描述怎样解决问题的程序,而非直接寻找解决办法。因为“FunSearch”的结果易于被解释和验证,这意味着这一方法有望激发科学家在该领域的进一步思考。
https://www.nature.com/articles/s41586-023-06924-6?error=cookies_not_supported&code=c8d1cf21-a517-4260-99d4-1dfcdcc43680
https://news.sciencenet.cn/htmlnews/2023/12/514241.shtm