EyeSeeIdentity: Exploring Natural Gaze Behaviour for Implicit User Identification during Photo Viewing
2024-2-26 09:55:39 Author: www.ndss-symposium.org(查看原文) 阅读量:7 收藏

L Yasmeen Abdrabou (Lancaster University), Mariam Hassib (Fortiss Research Institute of the Free State of Bavaria), Shuqin Hu (LMU Munich), Ken Pfeuffer (Aarhus University), Mohamed Khamis (University of Glasgow), Andreas Bulling (University of Stuttgart), Florian Alt (University of the Bundeswehr Munich)

Existing gaze-based methods for user identification either require special-purpose visual stimuli or artificial gaze behaviour. Here, we explore how users can be differentiated by analysing natural gaze behaviour while freely looking at images. Our approach is based on the observation that looking at different images, for example, a picture from your last holiday, induces stronger emotional responses that are reflected in gaze behavioor and, hence, is unique to the person having experienced that situation. We collected gaze data in a remote study (N = 39) where participants looked at three image categories: personal images, other people’s images, and random images from the Internet. We demonstrate the potential of identifying different people using machine learning with an accuracy of 85%. The results pave the way towards a new class of authentication methods solely based on natural human gaze behaviour.

View More Papers

Security-Performance Tradeoff in DAG-based Proof-of-Work Blockchain Protocols

Shichen Wu (1. School of Cyber Science and Technology, Shandong University 2. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Puwen Wei (1. School of Cyber Science and Technology, Shandong University 2. Quancheng Laboratory 3. Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education), Ren Zhang (Cryptape Co. Ltd. and…

Read More


文章来源: https://www.ndss-symposium.org/ndss-paper/auto-draft-515/
如有侵权请联系:admin#unsafe.sh