GPU 进阶笔记(四):NVIDIA GH200 芯片、服务器及集群组网(2024)
2024-8-19 08:0:0 Author: arthurchiao.github.io(查看原文) 阅读量:6 收藏

Published at 2024-08-19 | Last Update 2024-08-19

记录一些平时接触到的 GPU 知识。由于是笔记而非教程,因此内容不求连贯,有基础的同学可作查漏补缺之用。

水平及维护精力所限,文中不免存在错误或过时之处,请酌情参考。 传播知识,尊重劳动,年满十八周岁,转载请注明出处



2024 之前,不管是 NVIDIA 原厂还是第三方服务器厂商的 NVIDIA GPU 机器,都是以 x86 CPU 机器为底座, GPU 以 PCIe 板卡或 8 卡模组的方式连接到主板上,我们在第一篇中有过详细介绍,

典型 8 卡 A100 主机硬件拓扑

这时 CPU 和 GPU 是独立的,服务器厂商只要买 GPU 模组(例如 8*A100),都可以自己组装服务器。 至于 Intel/AMD CPU 用哪家,就看性能、成本或性价比考虑了。

随着 2024 年 NVIDIA GH200 芯片的问世,NVIDIA 的 GPU 开始自带 CPU 了。

  • 桌面计算机时代:CPU 为主,GPU(显卡)为辅,CPU 芯片中可以集成一块 GPU 芯片, 叫集成显卡
  • AI 数据中心时代:GPU 反客为主,CPU 退居次席,GPU 芯片/板卡中集成 CPU。

所以 NVIDIA 集成度越来越高,开始提供整机或整机柜。

2.1 CPU 芯片:Grace (ARM)

基于 ARMv9 设计。

2.2 GPU 芯片:Hopper/Blackwell/…

比如 Hopper 系列,先出的 H100-80GB,后面继续迭代:

  1. H800:H100 的阉割版,
  2. H200:H100 的升级版,
  3. H20:H200 的阉割版,比 H800 还差,差多了。

算力对比:GPU Performance (Data Sheets) Quick Reference (2023)

2.3 芯片产品(命名)举例

2.3.1 Grace CPU + Hopper 200 (H200) GPU:GH200

一张板子:

NVIDIA GH200 芯片(板卡)渲染图。左:Grace CPU 芯片;右:Hopper GPU 芯片 [2]

2.3.2 Grace CPU + Blackwell 200 (B200) GPU:GB200

一个板子(模块),功耗太大,自带液冷:

NVIDIA GB200 渲染图,一个模块包括 2 Grace CPU + 4 B200 GPU,另外自带了液冷模块。 [3]

72 张 B200 组成一个原厂机柜 NVL72:

NVIDIA GB200 NVL72 机柜。 [3]

3.1 GH200 芯片逻辑图:CPU+GPU+RAM+VRAM 集成到单颗芯片

NVIDIA GH200 芯片(单颗)逻辑图。[2]

3.1.1 核心硬件

如上图所示,一颗 GH200 超级芯片集成了下面这些核心部件:

  1. 一颗 NVIDIA Grace CPU;
  2. 一颗 NVIDIA H200 GPU;
  3. 最多 480GB CPU 内存;
  4. 96GB 或 144GB GPU 显存。

3.1.2 芯片硬件互连

  1. CPU 通过 4 个 PCIe Gen5 x16 连接到主板,

    • 单个 PCIe Gen5 x16 的速度是双向 128GB/s,
    • 所以 4 个的总速度是 512GB/s;
  2. CPU 和 GPU 之间,通过 NVLink® Chip-2-Chip (NVLink-C2C) 技术互连,

    • 900 GB/s,比 PCIe Gen5 x16 的速度快 7 倍;
  3. GPU 互连(同主机扩跨主机):18x NVLINK4

    • 900 GB/s

NVLink-C2C 提供了一种 NVIDIA 所谓的“memory coherency”:内存/显存一致性。好处:

  • 内存+显存高达 624GB,对用户来说是统一的,可以不区分的使用;提升开发者效率;
  • CPU 和 GPU 可以同时(concurrently and transparently)访问 CPU 和 GPU 内存。
  • GPU 显存可以超分(oversubscribe),不够了就用 CPU 的内存,互连带宽够大,延迟很低。

下面再展开看看 CPU、内存、GPU 等等硬件。

3.2 CPU 和内存

3.2.1 72-core ARMv9 CPU

  • 72-core Grace CPU (Neoverse V2 Armv9 core)

3.2.2 480GB LPDDR5X (Low-Power DDR) 内存

  • 最大支持 480GB LPDDR5X 内存;
  • 500GB/s per-CPU memory bandwidth。

参考下这个速度在存储领域的位置:

Fig. Peak bandwidth of storage media, networking, and distributed storage solutions. [1]

3.2.3 三种内存对比:DDR vs. LPDDR vs. HBM

  • 普通服务器(绝大部分服务器)用的是 DDR 内存,通过主板上的 DIMM 插槽连接到 CPU,[1] 中有详细介绍;
  • 1-4 代的 LPDDR 是对应的 1-4 代 DDR 的低功耗版,常用于手机等设备。
    • LPDDR5 是独立于 DDR5 设计的,甚至比 DDR5 投产还早;
    • 直接和 CPU 焊到一起的,不可插拔,不可扩展,成本更高,但好处是速度更快
    • 还有个类似的是 GDDR,例如 RTX 4090 用的 GDDR。
  • HBM 在第一篇中已经介绍过了;

下面列个表格对比三种内存的优缺点,注意其中的高/中/低都是三者相对而言的:

  DDR LPDDR HBM
容量
速度
带宽
可扩展性
可插拔 不可 不可
成本
功耗

更多细节,见 [1]。

例如,与 8-channel DDR5(目前高端 x86 服务器的配置)相比, GH200 的 LPDDR5X 内存带宽高 53%,功耗还低 1/8

3.3 GPU 和显存

3.3.1 H200 GPU

算力见下面。

3.3.2 显存选配

支持两种显存,二选一:

  • 96GB HBM3
  • 144GB HBM3e,4.9TB/s,比 H100 SXM 的带宽高 50%;

在一张板子内放两颗 GH200 芯片,CPU/GPU/RAM/VRAM 等等都翻倍,而且两颗芯片之间是全连接。

例如,对于一台能插 8 张板卡的服务器,

  • 用 GH200 芯片:CPU 和 GPU 数量 8 * {72 Grace CPU, 1 H200 GPU}
  • 用 GH200 NVL2 变种:CPU 和 GPU 数量 8 * {144 Grace CPU, 2 H200 GPU}

3.5 GH200 & GH200 NVL2 产品参数(算力)

NVIDIA GH200 产品参数。上半部分是 CPU、内存等参数,从 "FP64" 往下是 GPU 参数。[2]

两种服务器规格,分别对应 PCIe 板卡和 NVLINK 板卡。

4.1 NVIDIA MGX with GH200:原厂主机及组网

下图是单卡 node 的一种组网方式:

NVIDIA GH200 MGX 服务器组网。每台 node 只有一片 GH200 芯片,作为 PCIe 板卡,没有 NVLINK。[2]

  1. 每台 node 只有一片 GH200 芯片(所以只有一个 GPU),作为 PCIe 板卡,没有 NVLINK;
  2. 每台 node 的网卡或加速卡 BlueField-3 (BF3) DPUs 连接到交换机;
  3. 跨 node 的 GPU 之间没有直连,而是通过主机网络(走 GPU->CPU-->NIC 出去)的方式实现通信;
  4. 适合 HPC workload、中小规模的 AI workload。

4.2 NVIDIA GH200 NVL32:原厂 32 卡机柜

通过 NVLINk 将 32 个 GH200 芯片全连接为一个逻辑 GPU 模块,所以叫 NVL32

NVIDIA GH200 NVL32 组网。[2]

  1. NVL32 模块实际形态是一个机柜
    • 一个机柜能提供 19.5TB 内存+显存;
    • NVLink TLB 能让任意一个 GPU 访问这个机柜内的任意内存/显存;

      NVIDIA GH200 NVL32 中 3 种内存/显存访问方式。[2]

    • Extended GPU Memory (EGM)
  2. 多个机柜再通过网络互连,形成集群,适合超大规模 AI workload。

本文粗浅地整理了一些 NVIDIA GH200 相关技术知识。

其他:

  1. Practical Storage Hierarchy and Performance: From HDDs to On-chip Caches(2024)
  2. NVIDIA GH200 Grace Hopper Superchip & Architecture, datasheet, 2024
  3. NVIDIA GB200 NVL72 Delivers Trillion-Parameter LLM Training and Real-Time Inference, 2024

Written by Human, Not by AI Written by Human, Not by AI


文章来源: https://arthurchiao.github.io/blog/gpu-advanced-notes-4-zh/
如有侵权请联系:admin#unsafe.sh