Improving Text Embeddings with Large Language Models: Conclusion and References
2024-10-10 05:0:20 Author: hackernoon.com(查看原文) 阅读量:1 收藏

Authors:

(1) Liang Wang, Microsoft Corporation, and Correspondence to ([email protected]);

(2) Nan Yang, Microsoft Corporation, and correspondence to ([email protected]);

(3) Xiaolong Huang, Microsoft Corporation;

(4) Linjun Yang, Microsoft Corporation;

(5) Rangan Majumder, Microsoft Corporation;

(6) Furu Wei, Microsoft Corporation and Correspondence to ([email protected]).

Abstract and 1 Introduction

2 Related Work

3 Method

3.1 Synthetic Data Generation

3.2 Training

4 Experiments

4.1 Statistics of the Synthetic Data

4.2 Model Fine-tuning and Evaluation

4.3 Main Results

4.4 Multilingual Retrieval

5 Analysis

5.1 Is Contrastive Pre-training Necessary?

5.2 Extending to Long Text Embeddings and 5.3 Analysis of Training Hyperparameters

6 Conclusion and References

A Implementation Details

B Test Set Contamination Analysis

C Prompts for Synthetic Data Generation

D Instructions for Training and Evaluation

6 Conclusion

This paper shows that the quality of text embeddings can be substantially enhanced by exploiting LLMs. We prompt proprietary LLMs such as GPT-4 to generate diverse synthetic data with instructions in many languages. Combined with the strong language understanding capability of the Mistral model, we establish new state-of-the-art results for nearly all task categories on the competitive MTEB benchmark. The training process is much more streamlined and efficient than existing multi-stage approaches, thereby obviating the need for intermediate pre-training.

For future work, we aim to further improve the multilingual performance of our model and explore the possibility of using open-source LLMs to generate synthetic data. We also intend to investigate ways to improve the inference efficiency and lower the storage cost for LLM based text embeddings.

References

[1] Sanjeev Arora, Yingyu Liang, and Tengyu Ma. A simple but tough-to-beat baseline for sentence embeddings. In 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https://openreview.net/forum?id=SyK00v5xx.

[2] Luiz Henrique Bonifacio, Hugo Abonizio, Marzieh Fadaee, and Rodrigo Nogueira. Inpars: Unsupervised dataset generation for information retrieval. Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022.

[3] Samuel R. Bowman, Gabor Angeli, Christopher Potts, and Christopher D. Manning. A large annotated corpus for learning natural language inference. In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing, pages 632–642, Lisbon, Portugal, 2015. Association for Computational Linguistics. doi: 10.18653/v1/D15-1075. URL https: //aclanthology.org/D15-1075.

[4] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6- 12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/ 1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

[5] Daniel Fernando Campos, Tri Nguyen, Mir Rosenberg, Xia Song, Jianfeng Gao, Saurabh Tiwary, Rangan Majumder, Li Deng, and Bhaskar Mitra. Ms marco: A human generated machine reading comprehension dataset. ArXiv preprint, abs/1611.09268, 2016. URL https: //arxiv.org/abs/1611.09268.

[6] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loïc Barrault, and Antoine Bordes. Supervised learning of universal sentence representations from natural language inference data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 670–680, Copenhagen, Denmark, 2017. Association for Computational Linguistics. doi: 10.18653/v1/D17-1070. URL https://aclanthology.org/D17-1070.

[7] Alexis Conneau, Kartikay Khandelwal, Naman Goyal, Vishrav Chaudhary, Guillaume Wenzek, Francisco Guzmán, Edouard Grave, Myle Ott, Luke Zettlemoyer, and Veselin Stoyanov. Unsupervised cross-lingual representation learning at scale. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 8440–8451, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.acl-main.747. URL https://aclanthology.org/2020.acl-main.747.

[8] Zhuyun Dai, Vincent Y Zhao, Ji Ma, Yi Luan, Jianmo Ni, Jing Lu, Anton Bakalov, Kelvin Guu, Keith Hall, and Ming-Wei Chang. Promptagator: Few-shot dense retrieval from 8 examples. In The Eleventh International Conference on Learning Representations, 2022.

[9] DataCanary, hilfialkaff, Lili Jiang, Meg Risdal, Nikhil Dandekar, and tomtung. Quora question pairs, 2017. URL https://kaggle.com/competitions/quora-question-pairs.

[10] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard Harshman. Indexing by latent semantic analysis. Journal of the American society for information science, 41(6):391–407, 1990.

[11] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186, Minneapolis, Minnesota, 2019. Association for Computational Linguistics. doi: 10.18653/v1/N19-1423. URL https://aclanthology.org/N19-1423.

[12] Angela Fan, Yacine Jernite, Ethan Perez, David Grangier, Jason Weston, and Michael Auli. ELI5: Long form question answering. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics, pages 3558–3567, Florence, Italy, 2019. Association for Computational Linguistics. doi: 10.18653/v1/P19-1346. URL https://aclanthology. org/P19-1346.

[13] Tianyu Gao, Xingcheng Yao, and Danqi Chen. SimCSE: Simple contrastive learning of sentence embeddings. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6894–6910, Online and Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.emnlp-main.552. URL https://aclanthology.org/2021.emnlp-main.552.

[14] Tianyu Gao, Howard Yen, Jiatong Yu, and Danqi Chen. Enabling large language models to generate text with citations. ArXiv preprint, abs/2305.14627, 2023. URL https://arxiv. org/abs/2305.14627.

[15] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio Cesar Teodoro Mendes, Allison Del Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero C. Kauffmann, Gustavo de Rosa, Olli Saarikivi, Adil Salim, S. Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck, Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuan-Fang Li. Textbooks are all you need. ArXiv preprint, abs/2306.11644, 2023. URL https://arxiv.org/abs/2306.11644.

[16] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. Unnatural instructions: Tuning language models with (almost) no human labor. ArXiv preprint, abs/2212.09689, 2022. URL https://arxiv.org/abs/2212.09689.

[17] Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

[18] Gautier Izacard, Mathilde Caron, Lucas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand Joulin, and Edouard Grave. Towards unsupervised dense information retrieval with contrastive learning. ArXiv preprint, abs/2112.09118, 2021. URL https://arxiv.org/abs/2112. 09118.

[19] Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al. Mistral 7b. ArXiv preprint, abs/2310.06825, 2023. URL https://arxiv.org/ abs/2310.06825.

[20] Vladimir Karpukhin, Barlas Oguz, Sewon Min, Patrick Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and Wen-tau Yih. Dense passage retrieval for open-domain question answering. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 6769–6781, Online, 2020. Association for Computational Linguistics. doi: 10.18653/v1/2020.emnlp-main.550. URL https://aclanthology.org/2020.emnlp-main. 550.

[21] Patrick S. H. Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, Sebastian Riedel, and Douwe Kiela. Retrieval-augmented generation for knowledge-intensive NLP tasks. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6- 12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/ 6b493230205f780e1bc26945df7481e5-Abstract.html.

[22] Xianming Li and Jing Li. Angle-optimized text embeddings. ArXiv preprint, abs/2309.12871, 2023. URL https://arxiv.org/abs/2309.12871.

[23] Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long, Pengjun Xie, and Meishan Zhang. Towards general text embeddings with multi-stage contrastive learning. ArXiv preprint, abs/2308.03281, 2023. URL https://arxiv.org/abs/2308.03281.

[24] Xueguang Ma, Liang Wang, Nan Yang, Furu Wei, and Jimmy Lin. Fine-tuning llama for multi-stage text retrieval. ArXiv preprint, abs/2310.08319, 2023. URL https://arxiv.org/ abs/2310.08319.

[25] Tomas Mikolov, Kai Chen, Gregory S. Corrado, and Jeffrey Dean. Efficient estimation of word representations in vector space. In ICLR, 2013.

[26] Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context length for transformers. ArXiv preprint, abs/2305.16300, 2023. URL https://arxiv.org/ abs/2305.16300.

[27] Niklas Muennighoff. Sgpt: Gpt sentence embeddings for semantic search. ArXiv preprint, abs/2202.08904, 2022. URL https://arxiv.org/abs/2202.08904.

[28] Niklas Muennighoff, Nouamane Tazi, Loic Magne, and Nils Reimers. MTEB: Massive text embedding benchmark. In Proceedings of the 17th Conference of the European Chapter of the Association for Computational Linguistics, pages 2014–2037, Dubrovnik, Croatia, 2023. Association for Computational Linguistics. URL https://aclanthology.org/2023.eacl-main.148.

[29] Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and Ahmed Hassan Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4. ArXiv preprint, abs/2306.02707, 2023. URL https://arxiv.org/abs/2306.02707.

[30] Arvind Neelakantan, Tao Xu, Raul Puri, Alec Radford, Jesse Michael Han, Jerry Tworek, Qiming Yuan, Nikolas A. Tezak, Jong Wook Kim, Chris Hallacy, Johannes Heidecke, Pranav Shyam, Boris Power, Tyna Eloundou Nekoul, Girish Sastry, Gretchen Krueger, David P. Schnurr, Felipe Petroski Such, Kenny Sai-Kin Hsu, Madeleine Thompson, Tabarak Khan, Toki Sherbakov, Joanne Jang, Peter Welinder, and Lilian Weng. Text and code embeddings by contrastive pre-training. ArXiv preprint, abs/2201.10005, 2022. URL https://arxiv.org/abs/2201. 10005.

[31] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel Cer, and Yinfei Yang. Sentence-t5: Scalable sentence encoders from pre-trained text-to-text models. In Findings of the Association for Computational Linguistics: ACL 2022, pages 1864–1874, Dublin, Ireland, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022. findings-acl.146. URL https://aclanthology.org/2022.findings-acl.146.

[32] Jianmo Ni, Chen Qu, Jing Lu, Zhuyun Dai, Gustavo Hernandez Abrego, Ji Ma, Vincent Zhao, Yi Luan, Keith Hall, Ming-Wei Chang, and Yinfei Yang. Large dual encoders are generalizable retrievers. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 9844–9855, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.669.

[33] Rodrigo Nogueira, Wei Yang, Jimmy Lin, and Kyunghyun Cho. Document expansion by query prediction. ArXiv preprint, abs/1904.08375, 2019. URL https://arxiv.org/abs/1904. 08375.

[34] OpenAI. Gpt-4 technical report. ArXiv preprint, abs/2303.08774, 2023. URL https://arxiv. org/abs/2303.08774.

[35] Jeffrey Pennington, Richard Socher, and Christopher Manning. GloVe: Global vectors for word representation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1532–1543, Doha, Qatar, 2014. Association for Computational Linguistics. doi: 10.3115/v1/D14-1162. URL https://aclanthology.org/ D14-1162.

[36] Yifu Qiu, Hongyu Li, Yingqi Qu, Ying Chen, QiaoQiao She, Jing Liu, Hua Wu, and Haifeng Wang. DuReader-retrieval: A large-scale Chinese benchmark for passage retrieval from web search engine. In Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pages 5326–5338, Abu Dhabi, United Arab Emirates, 2022. Association for Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main.357.

[37] Nils Reimers and Iryna Gurevych. Sentence-BERT: Sentence embeddings using Siamese BERT-networks. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP), pages 3982–3992, Hong Kong, China, 2019. Association for Computational Linguistics. doi: 10.18653/v1/D19-1410. URL https://aclanthology.org/D19-1410.

[38] Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Tan, Yossi Adi, Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom Kozhevnikov, I. Evtimov, Joanna Bitton, Manish P Bhatt, Cristian Cantón Ferrer, Aaron Grattafiori, Wenhan Xiong, Alexandre D’efossez, Jade Copet, Faisal Azhar, Hugo Touvron, Louis Martin, Nicolas Usunier, Thomas Scialom, and Gabriel Synnaeve. Code llama: Open foundation models for code. ArXiv preprint, abs/2308.12950, 2023. URL https://arxiv.org/abs/2308.12950.

[39] Timo Schick and Hinrich Schütze. Generating datasets with pretrained language models. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 6943–6951, 2021.

[40] Hongjin Su, Weijia Shi, Jungo Kasai, Yizhong Wang, Yushi Hu, Mari Ostendorf, Wen-tau Yih, Noah A. Smith, Luke Zettlemoyer, and Tao Yu. One embedder, any task: Instructionfinetuned text embeddings. In Findings of the Association for Computational Linguistics: ACL 2023, pages 1102–1121, Toronto, Canada, July 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.findings-acl.71. URL https://aclanthology.org/ 2023.findings-acl.71.

[41] Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: Enhanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

[42] Nandan Thakur, Nils Reimers, Andreas Rücklé, Abhishek Srivastava, and Iryna Gurevych. Beir: A heterogeneous benchmark for zero-shot evaluation of information retrieval models. In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2), 2021.

[43] James Thorne, Andreas Vlachos, Christos Christodoulopoulos, and Arpit Mittal. FEVER: a large-scale dataset for fact extraction and VERification. In Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), pages 809–819, New Orleans, Louisiana, 2018. Association for Computational Linguistics. doi: 10.18653/v1/N18-1074. URL https: //aclanthology.org/N18-1074.

[44] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and fine-tuned chat models. ArXiv preprint, abs/2307.09288, 2023. URL https: //arxiv.org/abs/2307.09288.

[45] Kexin Wang, Nandan Thakur, Nils Reimers, and Iryna Gurevych. GPL: Generative pseudo labeling for unsupervised domain adaptation of dense retrieval. In Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 2345–2360, Seattle, United States, 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.naacl-main.168. URL https:// aclanthology.org/2022.naacl-main.168.

[46] Liang Wang, Nan Yang, Xiaolong Huang, Binxing Jiao, Linjun Yang, Daxin Jiang, Rangan Majumder, and Furu Wei. Text embeddings by weakly-supervised contrastive pre-training. ArXiv preprint, abs/2212.03533, 2022. URL https://arxiv.org/abs/2212.03533.

[47] Liang Wang, Nan Yang, and Furu Wei. Query2doc: Query expansion with large language models. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing, pages 9414–9423, Singapore, December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.585. URL https://aclanthology.org/ 2023.emnlp-main.585.

[48] Shitao Xiao, Zheng Liu, Peitian Zhang, and Niklas Muennighof. C-pack: Packaged resources to advance general chinese embedding. ArXiv preprint, abs/2309.07597, 2023. URL https: //arxiv.org/abs/2309.07597.

[49] Xiaohui Xie, Qian Dong, Bingning Wang, Feiyang Lv, Ting Yao, Weinan Gan, Zhijing Wu, Xiangsheng Li, Haitao Li, Yiqun Liu, et al. T2ranking: A large-scale chinese benchmark for passage ranking. ArXiv preprint, abs/2304.03679, 2023. URL https://arxiv.org/abs/ 2304.03679.

[50] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William Cohen, Ruslan Salakhutdinov, and Christopher D. Manning. HotpotQA: A dataset for diverse, explainable multi-hop question answering. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pages 2369–2380, Brussels, Belgium, 2018. Association for Computational Linguistics. doi: 10.18653/v1/D18-1259. URL https://aclanthology.org/D18-1259.

[51] Xin Zhang, Zehan Li, Yanzhao Zhang, Dingkun Long, Pengjun Xie, Meishan Zhang, and Min Zhang. Language models are universal embedders. ArXiv preprint, abs/2310.08232, 2023. URL https://arxiv.org/abs/2310.08232.

[52] Xinyu Zhang, Xueguang Ma, Peng Shi, and Jimmy Lin. Mr. TyDi: A multi-lingual benchmark for dense retrieval. In Proceedings of the 1st Workshop on Multilingual Representation Learning, pages 127–137, Punta Cana, Dominican Republic, 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.mrl-1.12. URL https://aclanthology.org/2021.mrl-1.12.

[53] Xinyu Crystina Zhang, Nandan Thakur, Odunayo Ogundepo, Ehsan Kamalloo, David AlfonsoHermelo, Xiaoguang Li, Qun Liu, Mehdi Rezagholizadeh, and Jimmy Lin. Miracl: A multilingual retrieval dataset covering 18 diverse languages. Transactions of the Association for Computational Linguistics, 11:1114–1131, 2023.

[54] Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. Pose: Efficient context window extension of llms via positional skip-wise training. ArXiv preprint, abs/2309.10400, 2023. URL https://arxiv.org/abs/2309.10400.


文章来源: https://hackernoon.com/improving-text-embeddings-with-large-language-models-conclusion-and-references?source=rss
如有侵权请联系:admin#unsafe.sh