美团首页推荐展位,如下图1所示,是用户打开美团App后,触达美团各业务的流量入口,每天服务数千万用户。首页推荐的核心能力体现在差异化地承载并快速响应用户个性化需求,需要支持高效分发外卖、餐饮、休闲娱乐、酒店旅游、优选、买菜、电商、超市闪购等各种业务供给。业务之间在履约特性、供给特点之间存在巨大的差异性,如外卖业务通常为用户“饭点儿”的即时随性消费,受到配送距离的强限制;酒店旅游业务需较长周期种草规划,偏好相对稳定,但集中于特定节假日时段;电商业务随着不同品类不同场景对于履约周期有所取舍。这些特点对个性化推荐建模提出了较高的要求。
全域用户建模是指在多个平台、多个应用或多个领域中,整合用户在不同环境下的行为数据,构建一个统一的用户画像或模型。这种建模方法旨在更全面地了解用户的兴趣、偏好和行为模式,增强建模的准确性和多样性,从而提供更加精准的个性化服务和推荐。
具体到美团首页推荐的业务场景下,全域用户建模旨在将用户的源域兴趣迁移到目标域,利用其他源域的用户行为数据来增强目标域即首页推荐的召回排序链路,解决目标域中的数据稀疏问题[1],以提高推荐效果。本文中的源域表示美团大搜、金刚区等除首页推荐外的其他渠道或展位,目标域即指首页推荐。推荐场景下的全域用户建模也可称为跨域推荐。
过去美团首页推荐各模块建模所用的行为数据过于依赖特定来源(仅首页猜喜),缺乏来自其他重要渠道的用户交互数据,这限制了首页猜喜推荐系统在全面理解用户行为模式上的能力。
美团App展位众多,相比于金刚区、首页搜索等展位,首页推荐展位用户行为较为稀疏。较多用户养成了通过频道区内页、主动搜索等方式来获取感兴趣供给的心智习惯,不利于猜喜展位释放更多的引流潜力。这一现状对猜喜侧用户兴趣预估、CTR/CVR排序预估等模型类建模方式造成挑战,主要体现在两方面:1)用户行为稀疏导致训练不充分;2)用户行为有偏导致分布预估不准。为解决这一挑战,本文通过引入全美团多源数据信号(包括多展位、多应用渠道),对猜喜各链路算法建模进行数据增广、纠偏、领域迁移等优化,旨在提升用户兴趣建模能力与人货匹配能力,实现召回排序技术升级,以带动核心业务目标提升、改善用户体验。
由于展位之间显著的数据分布差异、多业务间的可迁移性差异以及本地生活业务时空场景的强相关性三个方面的原因,使得将外域信号引入推荐各链路中存在严重的负迁移挑战。其中,展位差异是行业内落地全域建模的共有挑战,时空场景强相关性是美团本地生活业务特点带来的特有挑战,而业务间差异则是美团首页推荐展位分发多业务供给带来的展位特有挑战。
1.3.1 展位之间显著的数据分布差异
由于不同展位承载差异化的需求表达,美团搜索和业务金刚区较多承载用户意图更明确的主动需求,而首页推荐更多是用户有模糊性需求时的自然浏览,且不同展位的物料展示形式也不同,使得不同展位流量在用户分布、行为习惯等方面存在显著差异。美团App不同展位之间的业务占比具有显著差异,体现用户心智在不同渠道存在一定差异,在扩展用户信号覆盖时,需要考虑不同展位间用户行为的差异性。
例如,在美团的首页猜喜,向用户推荐药品可能会显得不合时宜,因为用户可能没有明确的购药意图。相反,在美团医药频道,用户的行为预示着他们有明确的相关意图,因此在该频道内搜索和推荐药品是用户预期之内的行为。如果直接将其他数据源应用于猜喜模型,不考虑上下文的差异,可能导致负迁移现象,即模型性能由于数据整合不当而降低。应对这一挑战的有效方法是采取精细化的数据集成方法和周到的模型训练策略,以确保数据的适当应用并优化模型性能。
1.3.2 多业务间的可迁移性差异
美团本地生活服务业务类型众多,与以内容、商品为主体的推荐场景下业务相比,特性显著。
首页推荐承接的外卖、餐饮、休闲娱乐、酒店旅游、优选、小象、电商、超市闪购等多个业务之间的履约特性、供给特点之间巨大的差异性导致全域建模时不同业务的可迁移性具有显著差异。如医药、闪购等大部分是在用户有明确需求时的即时需要;优选、小象超市等则表现为用户下单时会包含多件商品,其中可能包含用户为凑单而购买的商品,而并非用户对这些商品真正地感兴趣。这类业务往往在全域用户建模过程中更容易导致负迁移问题,而到店餐饮、休闲娱乐等业务的下单行为更能体现用户常态化的兴趣,因此负迁移问题相对较弱。
1.3.3 时空场景的强相关性
与纯电商推荐不同,美团推荐中的生活服务对时空限制非常敏感,所以时空场景信息对推荐结果十分重要。举几个时空相关的例子,用户在午间11点前后想订外卖吃饭,节假日前可能订酒店去旅游;用户在家需要零售买菜类商品,用户在商场需要到店餐饮类卡券。下图2展示了外卖和门票业务在首页推荐的点击量级随星期和小时的变化,可以发现用户对外卖的兴趣往往集中在饭点,而对门票的兴趣集中在周末,和大众的认知相一致。时空场景决定了用户的行为动机,用户与业务的交互依赖所处场景。
正如场景信息对首页推荐的模型提效非常重要,全域用户建模考虑其他展位信号向推荐展位迁移时也需要强调时空场景信息,以实现在不同的时空场景下对各业务信号的差异化迁移。例如在饭点,我们希望其他展位的外卖兴趣能够迁移到推荐展位,而在周末则希望用户过往在其他展位表达的对门票业务的兴趣更多地迁移到推荐展位。而如果在非饭点将大量餐饮外卖的兴趣迁移到推荐域,使得推荐系统在非饭点大量曝光餐饮外卖,反而会降低推荐系统效率。
基于上述几个方面的原因,为解决负迁移问题,应对不同展位之间显著的数据分布差异,需要对即时需求类的兴趣进行筛选而仅迁移常态化的用户兴趣;而生活服务供给的时空场景强相关性,则要求基于场景信息差异化地迁移适合当前场景的兴趣信号,给予其他展位不同类型的兴趣信号以不同的迁移权重,从而实现仅将对推荐域有益的其他域兴趣信号迁移到推荐域,排除干扰信号及噪声信号。
综上所述,全域用户建模有助于扩展用户理解和个性化服务的空间,但由于不同展位、不同业务之间用户行为和需求的显著差异,存在较大挑战。业界现有跨域推荐方法按照知识跨域迁移方式可以划分为基于Content的迁移[2][3]、基于Rating Patterns的迁移[4][5]和基于Embedding的迁移[6][7][8],其中基于Embedding的方式应用最为广泛,即利用机器学习方法首先学习出不同域的User或Item的Embedding表征,然后将Embedding作为知识载体进行域间的信息迁移。
业界现有方法尽管已经取得了不错的进展,但当应用于展位和业务之间都存在显著差异的美团场景下,均效果不佳。原因在于现有方法往往研究在多个相似领域之间进行知识转移(大多为不同场景下的多个推荐域[5][6][8][9][10][11]),相似域间的负迁移问题往往比较小,但在美团场景下不同展位和不同业务带来跨领域之间显著的差异性。
另外,现有的跨域推荐方法主要关注隐式建模范式,学习目标是去拟合目标域或源域兴趣的Ground Truth,而没有对兴趣信号的跨领域迁移进行直接监督。因此,从源域到目标域的兴趣迁移是隐式的和不可控的。这种隐式建模范式使得区分源域的有用信号和噪声信号变成一大挑战,很可能将不适当或干扰的兴趣迁移到目标域,从而导致负转移问题。
因此,基于多展位、多业务及时空场景强相关性带来的落地挑战,我们计划对不同域的数据在细粒度时空场景下的可迁移性进行精准建模,强调时空场景信息的重要性,仅迁移其他域中对推荐域有用的兴趣信号,以实现兴趣信号的有效迁移并优化模型效果。
全域用户建模的落地过程中,我们采取递进式的迭代策略,在首页推荐召排模块分阶段逐步摸索与落地。全域用户建模召排升级的整体思路及落地路径如下:
美团拥有众多场景展位和消费渠道以满足用户不同类型的需求,同一用户在不同展位/渠道上都可能有行为反馈,体现了用户细分的、多样的兴趣。为提升召回层对用户全域兴趣的感知能力,我们按照【首页猜喜 -> 多展位 -> 全渠道】的路径逐步扩展召回行为数据源,对行为触发的多路召回子策略进行了升级改造。
我们将重定向、热单、i2i类的多路召回子策略计算逻辑及召回trigger的行为数据源由仅首页猜喜行为扩展为全渠道行为(包括搜索、点击、支付行为等),在召回阶段补齐首页推荐系统对本展位外行为信号的建模及兴趣感知能力。通过在召回模块引入全渠道的多源(多展位、多应用渠道)兴趣信号,提升用户兴趣建模能力与人货匹配能力,带动大盘点击、支付等核心业务指标增长。
作为全域信号引入美团首页猜喜的初步尝试,优化全域行为召回策略的快速落地,并取得了较好的核心业务指标收益,验证了“全域用户建模”在首页猜喜的可行性,为后续我们围绕全域建模的更多模型侧的深入探索提供了基础验证和强大信心。
全域行为召回策略优化取得业务收益后,我们认识到了全域信号具有较大的应用潜力。因此我们进一步在模型训练中引入全域信号,通过在召回u2i模型和排序模型训练样本中引入金刚区、首页搜索中的支付行为数据,作为训练点击、支付目标的正样本,对原训练样本Label进行改写,Label改写方式如下图4所示。通过引入全域正向用户兴趣信号大幅扩充了模型训练所使用的正样本,克服了推荐域用户行为稀疏导致的训练不充分问题。
尽管通过Label改写方式大幅扩充了模型训练的正样本,在一定程度上缓解了数据稀疏问题,但囿于不同域数据分布和用户习惯上的较大差异,跨域迁移建模中存在的外域信号干扰本域信号的负迁移成为一大挑战。针对这种跨域信号引入过程中部分业务存在的“水土不服”问题,本文采用分业务赋予不同类型(本域与外域)监督信号阶梯式权重的方式,有效缓解了全域用户建模中的负迁移问题。
在实践过程中,针对首页推荐源域信号,赋予正常权重;针对金刚区、首页搜索的外域监督信号,赋予较低训练权重;针对易导致严重负迁移问题的场景强相关性业务(如优选、医药等),赋予极低训练权重。具体权重可根据模型训练时离线指标的变化调整。此外,扩充的正样本Label源于首页推荐原始负样本的改写,故不会明显增加离线存储与模型大小。
为缓解外域信号干扰本域信号的负迁移问题,我们最初的解决方案是对不同类型(本域与外域)监督信号分业务赋予阶梯式权重。此种方案虽然取得了较好的业务效果,但对训练权重的区分仅限于业务粒度,且阶梯式权重是由人工拍定的硬参数,仍难以精准地建模细粒度场景(如<工作日、中午、雨天、青年、白领>构成用户上下文场景)下源域兴趣向目标域的迁移。
我们希望将业务粒度的硬参数权重升级为精细时空场景粒度的自适应软权重,以实现在美团首页推荐场景下更精准地建模源域兴趣向目标域的迁移,即在不同的时空场景下精确地排除他域的噪声兴趣,保留适合推荐域的有用兴趣。为此,本文创新性地提出了一种显式兴趣迁移跨域推荐框架,解决现有方法面临的跨展位、多业务、强时空相关性场景下的负迁移挑战。无需复杂的网络结构及繁琐的模型训练过程,我们提出的显式框架能快速在工业推荐系统落地,为跨域推荐提供了一种简单而有效的解决方案。
我们也将这一创新思路整理并投稿顶会论文《EXIT: An EXplicit Interest Transfer Framework for Cross-Domain Recommendation》,文章已被CIKM 2024接受,arXiv下载链接为: PDF。
2.3.1 显式建模范式
基于对业界方案的充分调研,我们认为当前业界跨域推荐方案无法应对美团首页推荐场景下全域用户建模突出的负迁移问题。在无业界适用方案的情况下,我们基于对业务的深刻理解,创新性地提出显式兴趣迁移跨域推荐框架 EXIT(EXplicit Interest Transfer framework),来显式建模其他域适合向推荐域迁移的兴趣,解决传统隐式跨域推荐方法用于美团这类跨展位、多业务场景下广泛存在的负迁移问题。EXIT方案与传统跨域推荐方案的区别如下图5所示,和传统跨域推荐方法不同的是,EXIT框架能够基于用户所处的时空场景仅从源域迁移那些对目标域有益的兴趣信号,从而防止负迁移。
EXIT框架由协同训练的multi-task兴趣建模网络、兴趣组合标签和场景选择网络(SSN Net)组成,框架图如下图6所示。Multi-task兴趣建模网络分别构建了目标域tower建模用户的目标域(推荐域)兴趣、源域聚合tower统一建模推荐域之外的其他源域兴趣(搜索、金刚区等外域),避免多域兴趣单独建模导致模型参数和在线推理耗时增加,便于模型在线部署。兴趣组合标签作为兴趣迁移过程中监督学习的标签,代表了全域空间下用户在目标域中完整兴趣的ground truth,显式提供了跨域兴趣迁移的监督信号。场景选择门控网络(SSN Net)建模了细粒度场景下外域兴趣向推荐域的迁移力度,从众多的外域兴趣信号中筛选出适合推荐域的有用兴趣信号。以上三个模块协同建模了适合推荐域的用户完整兴趣信号。
2.3.2 兴趣组合标签
举例来说,用户在推荐域的场景A中购买了一件商品,而在场景B中曝光了这件商品但用户没有购买(如用户在中午饭点购买了餐饮外卖,但下午对餐饮外卖曝光未点),兴趣组合标签表达的含义是只有场景A的情况下用户在源域表达的对该商品的兴趣可以迁移到目标域,使得模型可以学习到源域兴趣在不同的时空场景下具有不同可迁移性,并泛化到相似用户或相似商品。
2.3.3 场景选择网络
根据前述的落地难点分析,用户在美团的兴趣偏好与特定的时空场景具有强相关性,因此场景信息在用户兴趣预估过程中发挥着重要作用,也是影响跨域兴趣迁移的重要因素。我们在EXIT框架中提出了场景选择网络(Scene Selector Network,SSN),来与兴趣组合标签相配合,使模型学习到在不同的细粒度场景下对不同业务输出差异化的兴趣转移强度,以确保兴趣迁移概率与用户兴趣的实际变化相匹配。例如,在<工作日,中午,写字楼,白领>的场景下,我们期望模型预估的外卖业务的兴趣迁移概率较高,而该场景下到店服务的迁移概率则应相对较低。相反,在<周末,下午,购物中心,白领>的场景下,模型预估的到店服务的兴趣迁移概率则应该较高。
2.3.4 离在线实验结果
为了验证所提出的显式兴趣迁移框架的效果,我们选取了多个基准模型进行了大量的离在线对比实验。基准模型包括经典推荐方法和跨域推荐方法两类。对比实验结果如下表所示,结果表明我们所提出的显式框架不仅能更好地建模用户兴趣偏好(离线AUC和在线CTCVR均有提升),也能防止负迁移问题(负反馈率NFR下降,负反馈率表示负反馈PV/总曝光PV,衡量用户对推荐结果的满意度)。EXIT框架在美团首页推荐系统的全量上线取得了全域用户建模单次迭代的最大线上收益。
我们对EXIT框架中的主要模块进行了消融实验,如下表3所示,实验结果表明框架中的各个模块都是有效的。兴趣组合标签ICL发挥了最显著的作用,不仅有助于更精准地建模用户兴趣,而且在防止负迁移方面起着关键作用。
我们也通过ICL的两种变体研究了群体一致性兴趣的作用:(1)$ICL(\eta=0)$表示ICL完全基于用户的个性化兴趣构建,而不考虑群体一致性兴趣;(2)$ICL(y^t+\eta)$表示在所有场景下直接使用群体一致性兴趣来代表跨域兴趣的可迁移性。表3的实验结果表明,忽视群体一致性兴趣或仅依赖于群体一致性兴趣来建模跨域兴趣迁移都会导致模型性能下降。实验结果证实了ICL构建方法的合理性,为了准确表示跨域兴趣的可迁移性,在用户的源域和目标域兴趣不一致时使用群体一致性兴趣;而当两个领域的兴趣相一致时,基于用户的个性化兴趣来决定是否进行跨越兴趣迁移。
为了更好地理解兴趣迁移概率的作用,我们可视化了模型在线Serving时外卖业务的平均兴趣迁移概率在一天24小时内的变化,如下图7所示。可以发现外卖业务的兴趣迁移概率在早餐、午餐和晚餐时间出现了三个峰值,这表明模型已经学会在不同的场景中自适应地调节跨领域兴趣迁移的强度。我们的显式建模框架能够基于细粒度的场景选择性地筛选出适当的源域兴趣信号,从而实现我们的建模目标。
召回和排序模型虽已通过「样本Label改写」及「显式兴趣迁移框架」等多期全域建模升级具备了全域感知能力,但召排全域体系建设仍然具有外域信号不全、全域特征缺乏、链路一致性不足的问题:
为全方面增强推荐整体链路的全域感知能力,构建统一的召排全域体系,我们进行了全域、全链路、全供给统一样本建设,并基于新的全域样本继续升级召排模型,通过更全面信号和链路一致性进一步发挥全域建模的效果。
2.4.1 全域、全链路、全供给统一样本建设
基于当前召回全域体系在样本层面存在的不足,我们对召回及排序模型样本进行统一升级,具体动作如下:
全域、全链路、全供给统一样本的示意图如下:
2.4.2 全域感知增强建模
升级后的召排统一样本具有更完备的全域正负信号及全域特征体系,为适配新样本增强链路全域感知能力,同时增强链路一致性以更大程度发挥全域建模效果,我们基于新样本对粗排模型进行了重构,以统筹兼顾全域兴趣预估与链路一致性任务。我们通过对全域兴趣预估与一致性联合建模,在模型中同时建模曝光、点击、支付、时长、互动和一致性(Pointwise+Pairwise)等目标,使模型同时具有校准能力和排序能力,且两类能力能互相补充。全域兴趣预估与一致性联合建模的多目标逻辑示意图如下:
粗排全域兴趣预估与一致性联合建模升级保证了全域信号在推荐系统各链路透出的一致性,起到了承“召回”启“精排”的作用,进一步增强了推荐系统各链路的全域感知能力。基于构建好的全域、全链路、全供给统一样本,我们也在同步升级召回模型及召回全域体系。
总的来说,我们通过多阶段递进式探索验证的方式,在美团首页推荐召排模块引入多展位、多应用渠道的多源用户交互数据,并在落地过程中解决美团多展位、多业务、时空场景强相关性的特点导致的严重跨域信号负迁移挑战。全域用户建模经过多期算法落地已经取得显著业务收益,缓解了首页推荐用户行为稀疏导致的模型训练不充分及用户兴趣预估有偏问题,大幅提升了首页猜喜推荐系统在全面理解用户行为模式上的能力。此外,我们在排序模块的部分创新成果也已在CIKM2024会议上发表。
全域用户建模在美团首页推荐的成功,验证了全域感知的重要性,增强推荐系统的全域感知能力是一条可行的路径。我们将进一步结合美团业务特点与业界先进技术,探索并创新更多全域用户建模在推荐系统落地的有效方案。
团队招聘火热进行中,以上讨论的全域用户建模和生成式推荐都在进一步升级迭代中,诚邀各路英才加入。简历请发送至:[email protected]。