All about Procedure Linkage Table
2021-09-19 16:00:00 Author: maskray.me(查看原文) 阅读量:941 收藏

Branch target

Many architectures encode a branch/jump/call instruction with PC-relative addressing, i.e. the distance to the target is encoded in the instruction. In an executable or shared object (called a component in ELF), if the target is bound to the same component, the instruction has a fixed encoding at link time; otherwise the target is unknown at link time and there are two choices:

  • text relocation
  • add indirection

In All about Global Offset Table, I mentioned that linker/loader developers often frowned upon text relocations because the text segment will be unshareable. In addition, the number of relocations would be dependent on the number of calls, which can be large.

1
2
3
4
5
6
7
8
9
call foo  # R_X86_64_PC32
call foo # R_X86_64_PC32

=>

# The instructions are patched at runtime.
# On ELF x86-64, the R_X86_64_PC32 relocation type is used.
call ...
call ...

Therefore, the prevailing scheme is to add a level of indirection analogous to that provided by the Global Offset Table for data.

Procedure Linkage Table

ELF uses Procedure Linkage Table to provide the indirection. Here is an x86-64 example:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
<.text>:
call foo
call bar

=>

<.text>:
call foo
call bar

<.plt>:
pushq .got.plt+8(%rip)
jmpq *.got.plt+16(%rip)
nop

foo@plt:
jmpq *.got.plt+24(%rip)
pushq $0
jmp .plt

bar@plt:
jmpq *.got.plt+32(%rip)
pushq $1
jmp .plt

<.got.plt>:
# First three entries are special.
.quad link-time address of _DYNAMIC # set by linker
.quad Obj_Entry used to indicate the current component # set by ld.so
.quad _rtld_bind_start # set by ld.so

.quad ... # relocated by R_X86_64_JUMP_SLOT referencing foo
.quad ... # relocated by R_X86_64_JUMP_SLOT referencing bar

In the relocatable object file, we have two call instructions. The linker synthesizes stubs in .plt and redirects calls into the stubs.

In the assembly dump, foo@plt is such a stub. Note that foo@plt is not a symbol table entry. It is just that objdump displays the PLT entry as foo@plt. We use the notation to describe a stub. The stub consists of 3 instructions. The first jmpq instruction loads an entry from .got.plt and performs an indirect jump. The remaining two instructions will be described when introducing lazy binding.

.got.plt holds an array of word size entries. On some architectures (x86-32, x86-64) .got.plt[0] is the link time address of _DYNAMIC. .got.plt[1] and .got.plt[2] are reserved by ld.so. .got.plt[1] is a descriptor of the current component while .got.plt[2] is the address of the PLT resolver.

The subsequent entries are for resolved function addresses. Each entry is relocated by an R_*_JUMP_SLOT relocation describing the target function symbol. Resolving a function address is also called a binding. There are two binding schemes.

Eager binding

The simpler scheme is eager binding. Before ld.so transfers control to the component, during relocation resolving, ld.so resolves the address of foo and writes it into the .got.plt entry. Therefore, when the program runs, the .got.plt entry is guaranteed to hold the address of the target function.

This is the model used by musl. In other ld.so implementations, lazy binding is usually the default. However, with the rise of security hardening on Linux distributions, many have switched to full RELRO linking scheme. If the component is linked with ld -z now, the linker will set the DF_1_NOW dynamic tag, and ld.so will use eager binding.

Eager binding can also be enabled with the environment variable LD_BIND_NOW=1.

For better understanding, we can ignore many instructions in the assembly output above.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
<.text>:
call foo
call bar

<.plt>:
...

foo@plt:
jmpq *.got.plt+24(%rip)
...

bar@plt:
jmpq *.got.plt+32(%rip)
...

<.got.plt>:
...
.quad ... # relocated by R_X86_64_JUMP_SLOT referencing foo
.quad ... # relocated by R_X86_64_JUMP_SLOT referencing bar

Eager binding has a bonus: it can detect underlinking problems. See Dependency related linker options for details.

Lazy binding

The extra instructions and extra entries in .got.plt are all for lazy binding.

The ELF dynamic shared library scheme postpones binding from the link time to the load time. There is some slowdown due to work before the program starts. In addition, a shared object has more code than the portion linked into the executable with static linking. This is because shared objects usually need to export all symbols which can defeat the archive member extraction trick and linker garbage collection.

Anyhow, eagerly resolving all R_*_JUMP_SLOT relocations had a significant overhead. (The overhead is exacerbated by the typical ld.so implementation. In the absence of LD_PRELOAD, ld.so first looks at the symbol table of the executable itself, then at the symbol tables of the DT_NEEDED entries (in order), and then at the second level DT_NEEDED entries, and so on. You may think that symbol search can be optimized if all defined symbols are added in one global hash table. However, a global hash table also costs some memory. In addition, dlopen, dlmopen, symbol versioning, and probably some features I don't know can all introduce complexity in the process and make a global hash table complex. Anyway, none of glibc/musl/FreeBSD rtld implements it. )

In the lazy binding scheme, ld.so does minimum work to ensure the jmp instruction lands in a trampoline which will tail call the PLT resolver in ld.so. On x86-64, the associated .got.plt entry refers to the pushq instruction immediately after the jmpq. The pushq instructions pushes a descriptor (for the .got.plt entry) and jumps to the PLT header. The PLT header is a stub calling the function address stored at .got.plt+16 (PLT resolver in ld.so) with an extra argument (descriptor for the current component).

1
2
3
4
5
6
7
8
9
<.plt>:
pushq .got.plt+8(%rip) # Push the descriptor
jmpq *.got.plt+16(%rip) # Jump to the PLT resolver in ld.so
nop

foo@plt:
jmpq *.got.plt+24(%rip) # The first call
pushq $0 # jumps here
jmp .plt

The PLT resolver in ld.so looks up the symbol with the .got.plt descriptor, writes the resolved address to the .got.plt entry, and then performs a tail call to the resolved address. Now that the .got.plt entry has been updated to the actual function address, subsequent calls to foo will bypass the PLT resolver.

-fno-plt

After the .got.plt entry is resolved, a function call requires the following 3 instructions:

1
2
3
In .text: call foo  # 5 bytes
At foo@plt: jmpq *.got.plt+offset(%rip)
In another component: the first instruction of the target function

An optimization idea is that we can just use one instruction (note that a GOT entry is eager binding), essentially inlining the PLT entry:

1
In .text: call *.got.plt+offset(%rip)  # 6 bytes

GCC 6.0 added -fno-plt to AArch64 and x86 to perform this transformation.

If the target is bound to the same component, GNU ld, gold, and LLD rewrite the instruction to addr32 call foo (with an instruction prefix). Anyhow, the long code sequence can be slightly slower. On RISC architectures, -fno-plt is usually bad. For example, AArch64 needs 3 instructions:

1
2
3
adrp    x0, _GLOBAL_OFFSET_TABLE_
ldr x0, [x0, #:gotpage_lo15:_Z3barv]
br x0

The function attribute __attribute__ ((noplt)) can be added to individual declarations for fine-grained control.

GOT setup is expensive without PC-relative addressing

On some older architectures, PLT may introduce overhead in function prologue code. The fundamental problem is that they do not support memory load with PC-relative addressing (e.g. x86-64 PC-relative instructions). Such architectures typically make a distinction between non-PIC PLT and PIC PLT.

x86-32 is a notorious example.

1
2
void bar(void);
void foo(void) { bar(); }
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
foo:
pushl %ebx
call __x86.get_pc_thunk.bx
addl $_GLOBAL_OFFSET_TABLE_, %ebx
subl $8, %esp
call bar@PLT
addl $8, %esp
popl %ebx
ret

.section .text.__x86.get_pc_thunk.bx,"axG",@progbits,__x86.get_pc_thunk.bx,comdat
.globl __x86.get_pc_thunk.bx
.hidden __x86.get_pc_thunk.bx
.type __x86.get_pc_thunk.bx, @function
__x86.get_pc_thunk.bx:
movl (%esp), %ebx
ret

What went wrong?

To work around the lack of PC-relative addressing, the i386 psABI reserves the callee-saved register ebx to refer to the GOT base (_GLOBAL_OFFSET_TABLE_). Then the PLT entry can load the .got.plt entry (by adding an offset to the GOT base) and do an indirect jump.

Using a callee-saved register has pros and cons. On the upside, a function just needs to compute _GLOBAL_OFFSET_TABLE_ once, because callees cannot clobber the register. On the downside, one general-purpose register is wasted (significant on x86-32 due to the lack of general-purpose registers. Prologue/epilogue code needs to save and restore the register, so tail calls are inhibited.

32-bit x86 Position Independent Code - It's that bad mentions an alternative scheme which allows a tail call:

1
2
3
foo:
call __x86.get_pc_thunk.cx
jmp *bar@GOT+_GLOBAL_OFFSET_TABLE_(%ecx)

jmp *bar@GOT+_GLOBAL_OFFSET_TABLE_(%ecx) requires a relocation type representing the distance from PC to the GOT entry. Unfortunately R_386_GOT32 and R_386_GOT32 relocation types are misdesigned and do not support the usage. That said, adding an extra addl instruction is not too bad. GCC since 6.0 can produce:

1
2
3
4
foo:
call __x86.get_pc_thunk.ax
addl $_GLOBAL_OFFSET_TABLE_, %eax
jmp *_Z3barv@GOT(%eax)

This code sequence uses a GOT-generating relocation which may defeat lazy binding, so it is not the default. Thankfully x86-64 supports PC-relative addressing and does not have the aforementioned problem.

Canonical PLT entries

For position dependent code (-fno-pic), traditionally the compiler optimizes for statically linked executables and uses direct addressing (usually absolute relocations). Taking the address of a function does not use GOT indirection. If the symbol turns out to be external, the linker has to employ a trick called "canonical PLT entry" (st_shndx=0, st_value!=0). The term is a parlance within a few LLD developers, but not broadly adopted.

Every PLT entry has an associated R_*_JUMP_SLOT entry and has a dynamic symbol (st_shndx=0, display as UND in readelf output). If we assign a non-zero value to the symbol, we can consider the address of the PLT entry as canonical and bind references from executable/shared objects to it.

1
2
3
4
5
6

extern void foo(void);
int main() { foo(); }


void foo(void) {}
1
2
3
4
5
6
7
8
% gcc -m32 -shared -fuse-ld=bfd -fpic b.c -o b.so
% gcc -m32 -fno-pic -no-pie -fuse-ld=lld a.c ./b.so
% readelf -W --dyn-syms a.out

Symbol table '.dynsym' contains 7 entries:
Num: Value Size Type Bind Vis Ndx Name
...
6: 00401670 0 FUNC GLOBAL DEFAULT UND foo

If b.so binds foo locally, e.g. if it is linked with -Bsymbolic-functions, taking the address from the executable and from the shared object will get different results.

To fix this (C and C++ require address uniqueness), compilers need to use GOT indirection. See Copy relocations, canonical PLT entries and protected visibility, sadly it doesn't seem that GCC folks want to take action.

x86-32 has an extra problem that it uses R_386_PC32 to represent a function call from non-PIC code. See my article for details.

Stack unwinding

As linker synthesized code, the PLT entries may not have unwind tables information. Unwinders using .eh_frame needs to recognize the _PROCEDURE_LINKAGE_TABLE_ region. See Explain GNU style linker options --no-ld-generated-unwind-info (the positive option is unnecessary in my opinion) for details.

Case study

AArch64

AArch64 has the best PLT design in my opinion.

PLT header

1
2
3
4
5
6
7
8
stp    x16, x30, [sp,#-16]!
adrp x16, Page(&(.plt.got[2]))
ldr x17, [x16, Offset(&(.plt.got[2]))]
add x16, x16, Offset(&(.plt.got[2]))
br x17
nop
nop
nop

.plt[n]

1
2
3
4
adrp x16, Page(&(.plt.got[n]))
ldr x17, [x16, Offset(&(.plt.got[n]))]
add x16, x16, Offset(&(.plt.got[n]))
br x17

The PLT resolver (e.g. _rtld_bind_start in FreeBSD rtld) can compute the R_AARCH64_JMP_SLOT index from &.plt.got[n] (saved x16) and &.plt.got[2] (x16).

When Arm v8.5 Branch Target Enablement is enabled, all indirect branches must land on a bti instruction. A PLT entry may indirectly branch to the PLT header, so the PLT header needs a bti instruction.

1
% aarch64-linux-gnu-gcc -fpic -mbranch-protection=standard -shared a.c -o a.so

PowerPC32

Power Architecture® 32-bit Application Binary Interface Supplement 1.0 - Linux® & Embedded specifies two PLT ABIs: BSS-PLT and Secure-PLT.

BSS-PLT is the older one. While .plt on other architectures are created by the linker, BSS-PLT let ld.so generate the PLT entries. This has the advantage that the section can be made SHT_NOBITS and therefore not occupy file size. The downside is the security concern of writable and executable memory pages. Even worse, as an implementation issue, GNU ld places .plt in the text segment and therefore the whole text segment is writable and executable. -z relro -z now has no effect.

In the newer Secure-PLT ABI, .plt holds the table of function addresses. This usage is weird, because on other architectures such a section is called .got.plt.

Like x86-32, PowerPC32 lacks memory load with relative addressing and has a distinction between non-PIC PLT and PIC PLT.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
00000000.plt_call32.f:
lis 11, .plt[n]@ha
lwz 11, .plt[n]@l(11)
mtctr 11
bctr

00000000.plt_pic32.f:
## If the GOT offset is beyond 64KiB
addis 11, 30, .plt[n]-_GLOBAL_OFFSET_TABLE_@ha(30)
lwz 11, .plt[n]-_GLOBAL_OFFSET_TABLE_@l(30)
mtctr 11
bctr

## If the GOT offset is within 64KiB
# lwz 11, .plt[n]-_GLOBAL_OFFSET_TABLE_(30)
# mtctr 11
# bctr
# nop

00000000.got2.plt_pic32.f:
## .got2 refers to the copy belonging to the current translation unit.
## Different translation units have to use different stubs.
addis 11, 30, .plt[n]-(.got2+0x8000)(30)
lwz 11, .plt[n]-(.got2+0x8000)@l(30)
mtctr 11
bctr

## The case when the GOT offset is within 64KiB is similar to plt_pic32.f.

The call-clobbered register r11 is used to compute the .plt entry address. For a non-PIC PLT, just use absolute addressing.

For a PIC PLT, the callee-saved register r30 holds the GOT base. PowerPC32 is one of the few old architectures where GCC -fpic and -fPIC are different. For -fpic, the GOT base is at _GLOBAL_OFFSET_TABLE_ in the component. For -fPIC, the GOT base is at .got2 for the current translation unit. The component may have multiple translation units and each has a different .got2.

Unlike x86 (which just places the lazy binding code after the initial jmpq instruction), the Secure-PLT ABI places the lazy binding code in __glink_PLTresolve (like PLT header on x86) and following entries. When I added PowerPC32 port to LLD, I picked the glink code in a separate section .glink for clarity.

For PIC function prologue code, setting up r30 is expensive. The previous foo tail calling bar C code requires these many instructions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
<foo>:
stwu 1, -16(1) # allocate stack
mflr 0
bcl 20, 31, 0x1bc
stw 30, 8(1) # save r30 which is used as the GOT base
mflr 30
addis 30, 30, 2 # high 16 bits of the GOT base (.got2+0x8000)
stw 0, 20(1) # save lr (copied to r0)
addi 30, 30, 32140 # low 16 bits of the GOT base (.got2+0x8000)
bl 0x1f0
lwz 0, 20(1)
lwz 30, 8(1)
addi 1, 1, 16
mtlr 0
blr

PowerPC64 ELFv1

The latest ABI is 64-bit PowerPC ELF Application Binary Interface Supplement 1.9. It defines the TOC ("Table of Contents") section which combines the functions of the GOT and the small data section. To optimize for inter-component calls, the ABI tries to avoid the per-function TOC base setup code. The TOC base address is stored in r2 which is not clobbered by inter-component calls. We will see later that as a result intra-component calls are slower.

The single .got.plt entry on other architectures is replaced by a function descriptor which contains 3 entries:

  • The first doubleword contains the address of the entry point of the function.
  • The second doubleword contains the TOC base address for the function.
  • The third doubleword contains the environment pointer for languages such as Pascal and PL/1.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
00000000000002c0 <0000001a.plt_call.bar>:
std r2,40(r1) # Save the TOC base address
ld r12,-32488(r2) # Load the function address from the function descriptor
mtctr r12
ld r2,-32480(r2) # Load the TOC base address from the function descriptor
cmpldi r2,0 # Non-zero indicates that the function descriptor has been resolved
bnectr+ # Just branch there
b 344 <bar@plt> # otherwise, call the glink entry to resolve the function descriptor
.long 0x0

00000000000002e0 <.foo>:
mflr r0
std r0,16(r1)
stdu r1,-112(r1)
bl 2c0 <0000001a.plt_call.bar> # Branch to the call stub
ld r2,40(r1) # Restore the TOC base address
addi r1,r1,112
ld r0,16(r1)
mtlr r0
blr
.long 0x0
.long 0x1000000
.long 0x80
.long 0x1fce0
.long 0x0

0000000000000318 <__glink_PLTresolve>:
mflr r12
bcl 20,4*cr7+so,320 <__glink_PLTresolve+0x8>
mflr r11
ld r2,-16(r11)
mtlr r12
add r11,r2,r11
ld r12,0(r11)
ld r2,8(r11)
mtctr r12
ld r11,16(r11)
bctr

0000000000000344 <bar@plt>:
li r0,0 # Pass an argument to describe the entry index
b 318 <__glink_PLTresolve>

bl 0x2c0 jumps to the call stub. The call stub loads the function address and the TOC base address from the function descriptor. If the TOC base address is zero, which means the function descriptor hasn't been resolved, branch to the glink entry to resolve the function descriptor; otherwise branch to the resolved function address. In both cases, r2 has been updated to the new TOC base address.

After returning from the callee, the linker synthesized ld r2,40(r1) is executed to restore the TOC base address.

When the target function is bound locally, the instruction after bl is a nop (instead of ld r2,40(r1)). This scheme is better than the compiler unconditionally generating a code sequence to load the TOC base address.

When the target function is external, the scheme pays the cost in the call stub. This scheme is worse than the compiler unconditionally generating a code sequence to load the TOC base address.

PowerPC64 ELFv2

Here are the main pain points with ELFv1:

  • Function descriptors waste space.
  • Call stubs are too long (7 instructions padded by one nop).

The idea is to move the TOC base address setup code from call stubs to the start of functions.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
00000000000002c0 <0000001a.plt_call.bar>:
std r2,24(r1) # Save the TOC base address
ld r12,-32496(r2) # Load function address from .plt entry
mtctr r12
bctr

00000000000002e0 <foo>:
# globalentry: functions with a different TOC jump here.
addis r2,r12,2 # Compute the TOC base address
addi r2,r2,31776
# localentry: functions with the same TOC jump here.
mflr r0
std r0,16(r1)
stdu r1,-32(r1)
bl 2c0 <0000001a.plt_call.bar> # Branch to the call stub
ld r2,24(r1) # Restore the TOC base address
addi r1,r1,32
ld r0,16(r1)
mtlr r0
blr

0000000000000348 <__glink_PLTresolve>:
mflr r0
bcl 20,4*cr7+so,350 <__glink_PLTresolve+0x8>
mflr r11
mtlr r0
ld r0,-16(r11)
subf r12,r11,r12
add r11,r0,r11
addi r0,r12,-44
ld r12,0(r11)
rldicl r0,r0,62,2
mtctr r12
ld r11,8(r11)
bctr

000000000000037c <bar@plt>:
b 348 <__glink_PLTresolve>

The distance between the global entry and the local entry is normally 8 bytes (2 instructions), but there can be more in the large code model. I have seen BoringSSL using more instructions to instrument assembly files to avoid relocations from text to data.

The globalentry/localentry scheme requires caution in many parts of the toolchain: taking addresses, copying symbols, computing branch distance for range extension thunks, etc.

In POWER10, IBM finally decided to add PC-relative instructions (Prefixed Load).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
0000000000000300 <0000001a.plt_call.bar>:
pld r12,130320 # 20010 [bar@plt]
mtctr r12
bctr

0000000000000340 <foo>:
mflr r0
std r0,16(r1)
stdu r1,-32(r1)
bl 300 <0000001a.plt_call.bar>
addi r1,r1,32
ld r0,16(r1)
mtlr r0
blr

# __glink_PLTresolve and bar@plt are the same.

So why do we still need glink entries? Well, the pld instruction loads the .plt entry (.got.plt on other architectures), but the address of the .plt entry is not communicated to the PLT resolver. This means that for the small code model the pld scheme is not optimal.

Compatibility is a thing. How to make the PC-relative instructions work with TOC and globalentry/localentry need a lot of thought and some complexity in the linker. I am sure that if you read the GNU ld or gold code, you will be amused:)

RISC-V

RISC-V supports memory load with PC-relative addressing, so it doesn't need non-PIC PLT vs PIC PLT distinction. However, its psABI defines the unneeded R_RISCV_CALL and GNU ld does something special with it. I filed R_RISCV_CALL vs R_RISCV_CALL_PLT about deprecation for the former.

Otherwise, its PLT scheme is quite good.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Disassembly of section .plt:

0000000000000270 <.plt>:
270: 00002397 auipc t2,0x2
274: 41c30333 sub t1,t1,t3
278: d903be03 ld t3,-624(t2) # 2000 <.got>
27c: fd430313 addi t1,t1,-44
280: d9038293 addi t0,t2,-624
284: 00135313 srli t1,t1,0x1
288: 0082b283 ld t0,8(t0)
28c: 000e0067 jr t3

0000000000000290 <bar@plt>:
290: 00002e17 auipc t3,0x2
294: d80e3e03 ld t3,-640(t3) # 2010 <bar>
298: 000e0367 jalr t1,t3
29c: 00000013 nop

The address of an anchor in the PLT entry is available in t1, so the R_*_JUMP_SLOT index can be computed in the PLT header.

x86

LLD supports -z retpolineplt for Spectre v2 mitigation. The indirection branch needs to be protected by a special code sequence. With -z now, the code sequence can be simplified a bit.

As part of Intel's Control-flow Enforcement Technology, Indirect Branch Tracking requires that indirect jumps land on an endbr instruction.

1
% gcc -fpic -fcf-protection=full -shared a.c -o a.so

An endbr64 instruction takes 4 bytes and does not fit in the current 16-byte PLT entry scheme. They somehow decided to add a new section .plt.sec. The linker uses endbr64 if all object files have the GNU_PROPERTY_X86_FEATURE_1_IBT GNU property.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
Disassembly of section .plt:

0000000000001000 <.plt>:
1000: ff 35 02 30 00 00 push 0x3002(%rip) # 4008 <_GLOBAL_OFFSET_TABLE_+0x8>
1006: f2 ff 25 03 30 00 00 bnd jmp *0x3003(%rip) # 4010 <_GLOBAL_OFFSET_TABLE_+0x10>
100d: 0f 1f 00 nopl (%rax)
1010: f3 0f 1e fa endbr64 # Jumps here if not resolved yet
1014: 68 00 00 00 00 push $0x0
1019: f2 e9 e1 ff ff ff bnd jmp 1000 <bar@plt-0x20>
101f: 90 nop

Disassembly of section .plt.sec:

0000000000001020 <bar@plt>:
1020: f3 0f 1e fa endbr64
1024: f2 ff 25 ed 2f 00 00 bnd jmp *0x2fed(%rip) # 4018 <bar+0x2fd8>
102b: 0f 1f 44 00 00 nopl 0x0(%rax,%rax,1)

Disassembly of section .text:

0000000000001030 <foo>:
1030: f3 0f 1e fa endbr64
1034: e9 e7 ff ff ff jmp 1020 <bar@plt>
1039: 0f 1f 80 00 00 00 00 nopl 0x0(%rax)

foo will jump to bar@plt in .plt.sec, then either jump to the corresponding .plt entry or the target function directly.

Let me register a complaint here. I think .plt.sec is unneeded complexity and I proposed:

1
2
3
4
5
endbr64
jmpq *xxx(%rip) # jump to the next endbr64 for lazy binding
endbr64
pushq relocaton_index
jmpq *xxx(%rip) # jump to .plt

https://groups.google.com/g/x86-64-abi/c/sQcX3__r4c0 has more discussions. Most folks agreed that the 2-PLT scheme was over-engineered. After this event, I subscribed to x86-64-abi in case I missed such over-engineering designs in the future.

Summary

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
if (supports memory load with PC-relative addressing) {
You made the right design choice!
Non-PIC PLT and PIC PLT can be the same.
See AArch64, RISC-V, x86-64.
} else if (-fno-plt) {
Use a call-clobbered register to store _GLOBAL_OFFSET_TABLE_.
Call sites are longer.
Every call site needs re-computing _GLOBAL_OFFSET_TABLE_.
The computation is unneeded for inter-component calls.
No lazy binding.
if (optimize inter-component calls)
Add linker optimization/relaxation.
} else if (optimize inter-component calls) {
Use the PowerPC64 style TOC.
if (Don't mind having two entry points at function start)
Use ELFv2 global/local entries.
else
Use ELFv1 function descriptors.
} else {
Use the x86-32 scheme.
}

The history of *NIX shared library support

... according to my archaeology.

In the late 1980s, SunOS 4.x extended the a.out binary format with dynamic shared library support. Unlike previous static shared library schemes, the a.out shared libraries are position independent and can be loaded at different addresses. The SunOS linker synthesized the jump linkage table to allow jumping to a target bound at the load time.

ELF uses Procedure Linkage Table which is similar to the SunOS a.out format.

In 1993, on NetBSD, https://github.com/NetBSD/src/commit/97ca10e37476fb84a20a8ec4b0be3188db703670 (A linker supporting shared libraries.) and https://github.com/NetBSD/src/commit/3d68d0acaed0a32f929b2c174146c62940005a18 (A linker supporting shared libraries (run-time part).) added shared library support similar to the SunOS scheme.

In 1994, GNU ld added a.out and ELF shared library support.

In 1995, glibc added ELF shared library support.

Dynamic shared library support on Mach-O was later. In a NeXTSTEP manual released in 1995, I can find MH_FVMLIB (fixed virtual memory library, which appears to be a static shared library scheme) but not MH_DYLIB (used by modern macOS for .dylib files). On Mach-O, the linker synthesizes call stubs in __TEXT,__stubs and redirects calls into this section.


文章来源: http://maskray.me/blog/2021-09-19-all-about-procedure-linkage-table
如有侵权请联系:admin#unsafe.sh